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ABSTRACT
In this paper, we address the issue of recommending fairly from the

aspect of providers, which has become increasingly essential in mul-

tistakeholder recommender systems. Existing studies on provider

fairness usually focused on designing proportion fairness (PF) met-

rics that first consider systematic fairness. However, sociological

researches show that to make the market more stable, max-min

fairness (MMF) is a better metric. The main reason is that MMF

aims to improve the utility of the worst ones preferentially, guid-

ing the system to support the providers in weak market positions.

When applying MMF to recommender systems, how to balance user

preferences and provider fairness in an online recommendation

scenario is still a challenging problem. In this paper, we proposed

an online re-ranking model named Provider Max-min Fairness

Re-ranking (P-MMF) to tackle the problem. Specifically, P-MMF

formulates provider fair recommendation as a resource allocation

problem, where the exposure slots are considered the resources to

be allocated to providers and the max-min fairness is used as the

regularizer during the process. We show that the problem can be

further represented as a regularized online optimizing problem and

solved efficiently in its dual space. During the online re-ranking

phase, a momentum gradient descent method is designed to conduct

the dynamic re-ranking. Theoretical analysis showed that the regret

of P-MMF can be bounded. Experimental results on four public rec-

ommender datasets demonstrated that P-MMF can outperformed

the state-of-the-art baselines. Experimental results also show that

P-MMF can retain small computationally costs on a corpus with

the large number of items.
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1 INTRODUCTION
Raised out of social, ethical, and economic considerations, the fair-

ness problem becomes non-negligible in recommendation [1, 2].

In multi-stakeholder recommender systems (RS), there are several

different participants, including users, items, providers, etc [1]. Var-

ious models have been proposed for recommending fairly from

the viewpoints of users [29], providers [8, 35], or both [45]. In this

paper, we are concerned about the problem of ensuring provider

fairness in multi-stakeholder recommender systems.

There are many cultural variations regarding fairness [43, 44] in

sociological researches. One practical fairness definition is based on

two sociological concepts: equality and equity [31]. According to

Matsumoto and Juang [31], equality can be defined as: everyone is
treated the same and provided the same resources to succeed, while eq-
uity can be defined as: ensuring that resources are equally distributed
based on needs. Figure 1 gives an intuitive example of the two types

of fairness under the recommendation scenario. Suppose we have

some resources (i.e., exposure slots) to ensure that providers can

get the apples (i.e., survival in the market). As shown in Figure 1,

equality ensures that the RS evenly gives each provider the same

support, while equity (known as distributive justice) emphasizes

that RS will assign resources to providers as different ratios [26].

Based on the concepts of equity [25], the metrics of propor-

tion fairness (PF) and max-min fairness (MMF) [33] have been

respectively proposed. PF and MMF have been widely used for

computation network and transportation [9, 17, 36]. Their formal

1
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Figure 1: An intuitive example of equality and equity.1

formulations in the provider fair recommendation scenario will

be explained in Section 3. Intuitively, PF and MMF tries to assign

resources to the specified ratios [7]. PF is based on welfare-based

principles (known as Aristotle’s Principle and Nash solution [33]),

which maximizes the sum of welfare of providers. MMF (known

as Rawls’ Principle and Kalai-Smorodinsky solution [23]) aims to

improve the worst-off providers’ utilities. MMF has proven to be a

better metric for the provider fairness problem, because worse-off

providers, who occupy the majority of the platform, can survive

with these supports. Taking care of these weak providers will in-

crease the stability of the recommender market [35]. For example,

according to the report by Erickson [18], small sellers in Amazon

have difficulty facing the challenges of “lower profitability” and

“inability to personalize” on their own. The unfair system without

ensuring MMF may result in a broken relationship between the

providers and RS and, finally, force the providers to leave.

Existing provider fair recommendation models either consider

the PF of providers [8, 32, 35, 47] or use heuristics to guarantee the

utilities of the worse-off providers [8, 35]. However, these heuristic

methods do not directly consider theMMF and lack theoretical guar-

antees when adapting to online scenarios. Moreover, the heuristic

methods lack the flexibility to trade-off with user utility, which

inevitably hurts the users’ experience.

This paper aims to develop a practical re-ranking model that

considers MMF from the providers’ perspectives. We formulate

the provider fair recommendation as a process of resource alloca-

tion [10]. In such a process, resources can be regarded as limited

ranking slots, and providers are viewed as the demanders. The cost

of allocation is defined as the preference of the users. Moreover,

an MMF regularizer is imposed on the allocation to maximize the

minimum allocation to a specific provider.

To adapt the method to the online recommendation scenarios,

we proposed an online re-ranking algorithm called P-MMF that

focuses on provider max-min fairness by viewing the provider fair

online recommendation as a regularized online optimizing prob-

lem. However, the optimization problem contains many integral

variables, making it notoriously difficult to solve. We then derive

its dual problem and propose an efficient algorithm to optimize

the problem in the dual space. In the online setting, a momentum

gradient descent method was developed to make an effective and

efficient online recommendation. Our theoretical analysis shows

that the regret of the P-MMF can be well-bounded. Furthermore,

the P-MMF is also computationally efficient due to its insensitivity

to the number of items.

We summarize the major contributions of this paper as follows:

(1) We analyzed the importance of ensuring equity for providers

in multi-stakeholder recommender systems, and propose to use the

max-min fairness metric in provider fair recommendation.

(2) We formulated the provider fair recommendation as a re-

source allocation problem regularized by the max-min fairness,

and proposed a re-ranking model called P-MMF that balances the

provider fairness and the user preference. Our theoretical analysis

showed that the regret of P-MMF can be bounded.

(3) Simulations on a small dataset showed the superiority of MMF

compared to PF in recommending fairly to providers. Extensive

experiments on four publicly available datasets demonstrated that

P-MMF outperformed state-of-the-art baselines, including the PF-

based and MMF-based methods.

2 RELATEDWORK
Fairness has become a hot research topic in multi-stakeholder rec-

ommender systems [1, 2]. Researchers have proposed several user-

oriented and item/provider-oriented fairness re-ranking models.

For user-oriented fairness, Abdollahpouri et al. [3] proposed a user-

centered evaluation that measures users’ different interest levels

in popular items. Li et al. [29], Sacharidis [40], Serbos et al. [41]

addressed the user-centered fairness from a group fairness perspec-

tive. For provider-oriented fairness, Gómez et al. [21] proposed a

rule-based algorithm to ensure that the exposures of items should

be equally distributed. Ge et al. [20] aimed to enhance dynamic

fairness when item popularity changes over time. However, these

provider-oriented methods did not consider the user’s perspective.

Recently, there are also studies that jointly consider the trade-off

between user preference and provider fairness. Chakraborty et al.

[11] claimed that all providers should receive the amount of expo-

sures proportional to their relevance in economy platforms. Rah-

mani et al. [38] studied the trade-offs between the user and producer

fairness in Point-of-Interest recommendations. TFROM [47] and

CPFair [32] formulated the trade-off as a knapsack problem and a

relaxed linear programming problem, respectively. However, they

used greedy-based algorithms in online scenarios, which only im-

proves the proportion fairness of providers. Some studies noticed

that the utilities of worse-off providers should also be guaranteed.

For example, FairRec [35] and its extension FairRec+ [8] proposed

hard constraints to ensure that every provider should have the

lowest exposures. Welf [16] proposed a Frank-Wolfe algorithm to

maximize the welfare functions of worse-off items. However, they

were all designed for offline scenarios and suffered from high com-

putational costs, which prevented them from being applied to real

online recommendation systems [50, 51].

In this paper, we formulate the re-ranking task as the resource

allocation problem [10], which is crucial in communications and

transportation. In online resource allocation, most studies [14, 28]

focused on designing the time-separable reward functions, which

is the sum of rewards over periods. Li et al. [27] proposed a local-

based sub-gradient algorithm for the linear reward. Cheung et al.

[13] designed a dual-based online algorithm with learning from

the distribution of requests. Balseiro et al. [5] proposed a mirror-

descent method to solve the fairness-regularized online allocation

problem.
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3 PROVIDER FAIR RE-RANKING
In this section, we first define the notations in a multi-stakeholders

recommender system. Then we give the formal definitions of the

proportion and max-min fairness.

In a multi-stakeholders recommender system, multiple partici-

pants exist, including users, item providers, and other stakeholders.

Let U,I, and P be the set of users, items, and providers, respec-

tively. Each item 𝑖 ∈ I is associated to a unique provider 𝑝 ∈ P.

The set of items associated with a specific provider 𝑝 is denoted as

I𝑝 . When a specific user 𝑢 ∈ U accesses the recommender system,

a list of 𝐾 items, denoted by 𝐿𝐾 (𝑢) ∈ I𝐾 , is provided to the user.

For each user-item pair (𝑢, 𝑖), the recommender model estimates

a preference score 𝑠𝑢,𝑖 ∈ R. These items are ranked according to

their preference scores. In this paper, we define the user-side utility

of exposing item list 𝐿𝐾 (𝑢) to 𝑢 as the summation of the preference

scores in the list, denoted by 𝑓 (𝐿𝐾 (𝑢)) =
∑
𝑖∈𝐿𝐾 (𝑢 ) 𝑠𝑢,𝑖 . We follow

the literature convention [32, 35] and define the fairness vector of

providers as e ∈ R | P |
, where for a specific provider 𝑝 , e𝑝 ∈ R+

denotes the number of exposed items of provider 𝑝 . The goal of

provider fair re-ranking is to compute a new fair list 𝐿𝐹
𝐾
(𝑢) ∈ I𝐾

which well balances the user utilities 𝑓

(
𝐿𝐹
𝐾
(𝑢)

)
and a provider

fairness metric defined over e.
In real-world applications, the users arrive at the recommender

system sequentially. Assume that at time 𝑡 user 𝑢𝑡 arrives. The rec-

ommender system needs to consider long-term provider exposure

during the entire time horizon from 𝑡 = 0 to 𝑇 . Our task can be

formulated as a resource allocation problem [5] with time-separable

fairness. Specifically, the optimal utility of the recommender system

can be defined as a time-separable utility function, which is the

accumulated reward [5] over periods from 0 to 𝑇 . In this case, e𝑝
can be seen as the total number of exposed items of provider 𝑝 ,

accumulated over the period 0 to 𝑇 . Formally, when trading-off

the user preference and provider fairness, we have the following

mathematical program:

max

𝐿𝐹
𝐾

1

𝑇

𝑇∑︁
𝑡=1

𝑓

(
𝐿𝐹𝐾 (𝑢𝑡 )

)
+ _𝑟 (e)

s.t. e ≤ 𝜸

, (1)

where 𝜸 ∈ R | P |
denotes the weights of different providers, e.g.,

weighted PF or MMF [7], and 𝑟 (e) ∈ R is a provider fairness metric

that serves as a fairness regularizer. Note that the constraint e ≤ 𝜸
can also be viewed as the maximum resources allocated to the

providers. Following the definitions of PF and MMF [7], 𝑟 (e) also
has two different forms:

Proportion Fairness (PF): 𝑟 (e) = ∑
𝑝∈P log

[
1 + e𝑝/𝜸𝑝

]
.

Max-min Fairness (MMF): 𝑟 (e) = min𝑝∈P
[
e𝑝/𝜸𝑝

]
.

Using the proportion fairness as the regularizer, we can reduce

the difference between e and 𝜸 , while using the max-min fairness

we can improve the relative exposure (w.r.t. weights 𝜸 ) of the least
exposed provider.

4 OUR APPROACH: P-MMF
In this section, we first formulate provider fairness in the recom-

mendation as a resource allocation problem. Then, we propose an

algorithm called P-MMF for the online recommendation.

u1

1 0 1 0 0 1

items

𝑲 = 𝟑

𝐋K
F (u1)

u2 𝐋K
F (u2)

providers

users

𝑝1(𝛾1 = 6)

𝒙1

0 0 0 1 1 1

𝒙2

𝑝1 𝑝2

2 4

𝑲 = 𝟑

𝒆

exposures

ranking list decision variables

𝑝2(𝛾2 = 6)

Figure 2: A toy example for time-separable fairness in rec-
ommendation

4.1 Resource allocation with provider fairness
We formulate the providers’ fair recommendation problem as a

resource allocation process [10]. In such a process, the resources can

be regarded as limited ranking slots that are allocated to providers.

The allocation cost is defined based on the preference of the users

and the max-min fairness.

Formally, based on Equation (1), the fair recommendation prob-

lem can be written as a linear programming:

max

x𝑡

1

𝑇

𝑇∑︁
𝑡=1

𝑔(x𝑡 ) + _𝑟 (e)

s.t.

∑︁
𝑖∈I

x𝑡𝑖 = 𝐾, ∀𝑡 ∈ [1, 2, . . . ,𝑇 ]

e𝑝 =

𝑇∑︁
𝑡=1

∑︁
𝑖∈I𝑝

x𝑡𝑖 , ∀𝑝 ∈ P

𝑔(x𝑡 ) =
∑︁
𝑖∈I

x𝑡𝑖𝑠𝑢𝑡 ,𝑖 , ∀𝑡 ∈ [1, 2, . . . ,𝑇 ]

e ≤ 𝜸 , x𝑡𝑖 ∈ {0, 1}, ∀𝑖 ∈ I, ∀𝑡 ∈ [1, 2, . . . ,𝑇 ]

, (2)

where x𝑡 ∈ {0, 1} | I |
is the decision vector for user𝑢𝑡 , and𝑔(·) is the

user-side utility function. Specifically, for each item 𝑖 , x𝑡𝑖 = 1 if it is

added to the fair ranking list 𝐿𝐹
𝐾
(𝑢𝑡 ), otherwise, x𝑡𝑖 = 0. Note that

𝑔(·) is equivalent to 𝑓 (·) in the sense that they produce the same

result, while 𝑔(·) takes the binary decision vector as input. The

first constraint in Equation (2) ensures that the recommended lists

are of size 𝐾 . The second constraint in Equation (2) suggests that

the exposures of each provider 𝑝 are the accumulated exposures

of the corresponding items over all periods. In general, we think

time-separable fairness would be preferred under the scenarios

with weak timeliness. For example, recommending the items with

long service life (e.g., games and clothes etc.).

Figure 2 gives a toy example of the linear programming prob-

lem (2). In the example, we set 𝑇 = 2. Suppose there are two users,

𝑢1 and 𝑢2, arriving at the system one by one. At each time step, the

system recommends a list of 𝐾 = 3 items. Therefore, the system

has overall 2 × 3 = 6 slots to expose. Suppose the system has two

providers 𝑝1 and 𝑝2, each owning three items. Let’s set identical

weights for 𝑝1 and 𝑝2 (i.e., 𝜸 = [𝜸1 = 6,𝜸2 = 6]). The model solves

problem (2) and the solution is two binary vectors: x1 for 𝑢1 and

x2 for 𝑢2. Finally, we count the exposures over the time 𝑇 = 2:

e = [𝑒𝑝1
= 2, 𝑒𝑝2

= 4], which means by recommending the ranking

lists 𝐿𝐹
𝐾
(𝑢1) (created based on x1) and 𝐿

𝐹
𝐾
(𝑢2) (created based on x2)
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to 𝑢1 and 𝑢2, provider 𝑝1 and 2 get 2 and 4 exposures, respectively.

Although here we have already given a linear programming

solution Eq.(2) to the problem, it can only be solved small-scale

problems in an offline way. In online recommendation systems, for

each user 𝑢𝑡 access, the model needs to generate a fair ranking list

𝐿𝐹
𝐾
(𝑢𝑡 ) from large-scale item corpus immediately. This means we

have no idea about the information after 𝑡 . Next, we will discuss

how to use MMF in the online recommendation problem.

4.2 P-MMF for online applications
In this section, firstly, we formulate the MMF in online scenarios.

Next, we consider the dual of the original problem. Focusing on

the dual problem has several advantages: the dual problem has

significantly fewer variables, and the variables no longer need to

be integers as in the original problem. Finally, we proposed a mo-

mentum gradient descent algorithm for efficient online learning.

4.2.1 Max-min fairness in online scenarios. At time step 𝑡 , the rec-

ommender system receives a request from user 𝑢𝑡 . An online algo-

rithm ℎ produces a real-time decision vector x𝑡 ∈ {0, 1} | I |
based

on the current user 𝑢𝑡 and the previous historyH𝑡−1 = {𝑢𝑠 , x𝑠 }𝑡−1

𝑠=1
:

x𝑡 = ℎ(𝑢𝑡 | H𝑡−1) .Wedefine the online reward ofmax-min fairness

to be the summation of rewards over all time steps:

𝑊 =
1

𝑇

𝑇∑︁
𝑡=1

𝑔(x𝑡 ) + _min

[
e/𝜸

]
, (3)

where min

[
e/𝜸

]
corresponds to the max-min fairness regularizer.

Our goal is to design an algorithm ℎ that attains low regret.

Denote by𝑊𝑂𝑃𝑇 the optimal value, we measure the regret of an

algorithm as the expectation difference between the optimal perfor-

mance𝑊𝑂𝑃𝑇 of the offline problem and that of the online algorithm

𝑊 over user distributionsU:

Regret(ℎ) = E𝑢𝑡∼U [𝑊𝑂𝑃𝑇 −𝑊 ] . (4)

4.2.2 Dual problem. From the original problem in Equation (1), we

know that the integer decision variable x𝑡 is of size |I | for each time

𝑡 , which is hard to solve. However, considering its dual problem,

we can significantly reduce its computational cost.

Theorem 1 (Dual Problem). The dual problem of Equation (1)

can be written as:
𝑊𝑂𝑃𝑇 ≤𝑊𝐷𝑢𝑎𝑙 = min

𝝁∈D

[
𝑔∗ (A𝝁) + _𝑟∗ (−𝝁)

]
,

(5)

where A ∈ R | I |× |P | is the item-provider adjacent matrix, and 𝐴𝑖𝑝 =

1 indicates item 𝑖 ∈ I𝑝 , and 0 otherwise. Letting X = {x𝑡 |x𝑡 ∈
{0, 1} ∧ ∑

𝑖∈I x𝑡𝑖 = 𝐾}, 𝑔∗ (·), 𝑟∗ (·) are the conjugate functions:

𝑔∗ (𝑐) = max

x𝑡 ∈X

𝑇∑︁
𝑡=1

[
𝑔(x𝑡 )/𝑇 − c⊤x𝑡

]
, 𝑟∗ (−𝝁) = max

e≤𝜸

[
𝑟 (e) + 𝝁⊤e/_

]
,

and D = {𝝁 |𝑟∗ (−𝝁) < ∞} is the feasible region of dual variable 𝝁.

Proof of Theorem 1 can be found in Appendix A.1. From Theo-

rem 1, we can have a new non-integral decision variable 𝝁 ∈ R | P |
.

In practice, the provider size |P | ≪ |I|. Besides, due to A’s sparsity,
it is very efficient to computeA𝝁, which aims to project the variable

𝝁 from provider space into item spaces.

In our online algorithm discussed in Section 4.2.3, we can have

a closed form of the conjugate function 𝑔∗ (·) in constant time. As

for the feasible region D and the conjugate function 𝑟∗ (·), we have
Theorem 2 and Lemma 1.

Theorem 2 (Dual Feasible Region). In the MMF, the feasible
region of the dual problem

D =

𝝁
������ ∑︁
𝑝∈S

𝜸𝑝𝝁𝑝 ≥ −_,∀S ∈ P𝑠
 ,

where P𝑠 is the power set of P, i.e., the set of all the subsets of P.

The proof of Theorem 2 can be found in Appendix A.1, which

implies the following Lemma 1:

Lemma 1. The conjugate function 𝑟∗ (·) has a closed form:
max𝝁≤𝜸 𝑟∗ (−𝝁) = 𝜸𝑇 𝝁/_ + 1, and the optimal dual variable is:
arg max𝝁≤𝜸 𝑟

∗ (−𝝁) = 𝜸/_.

4.2.3 The P-MMF algorithm. Algorithm 1 illustrates P-MMF algo-

rithm. Following Balseiro et al. [5], P-MMF keeps a dual variable

𝝁𝑡 , the remaining resources 𝜷𝑡 and the gradient g𝑡 for each time 𝑡 .

Whenever a user arrives, the algorithm computes the recom-

mended variable x𝑡 based on the remaining resources and the dual

variable 𝝁𝑡 (line 7). The final dual variable is estimated as the aver-

age dual variable for each time 𝑡 : 𝝁 =
∑𝑇
𝑡=1

𝝁𝑡/𝑇 . Intuitively, for 𝝁𝑡 ,
when the values of dual variables are higher, the algorithm naturally

recommends fewer items related to the corresponding provider. The

remaining resources 𝜷𝑡 ensure that the algorithm only recommends

items from providers with remaining resources. Note that in line 7,

the formulation is linear with respect to x𝑡 . Therefore, it is efficient

to compute x𝑡 through a top-𝐾 sort algorithm in constant time.

The online learning process is as follows. Firstly, we get the

closed form of the conjugate function of max-min regularizer

𝑟∗ (−𝝁𝑡 ) according to Lemma 1. Then we can get the subgradient

of the dual function 𝑔∗ (A𝝁) + _𝑟∗ (−𝝁):
−A⊤x𝑡 + e𝑡 ∈ 𝜕

(
𝑔∗ (A𝝁𝑡 ) + _𝑟∗ (−𝝁𝑡 )

)
.

We also add the last timemomentum [37] to the updated gradient

g𝑡 . Finally, we utilize g𝑡 to update the dual variable by performing

the online descent in line 14, where we used weighted ℓ2 − 𝑛𝑜𝑟𝑚 :

∥𝝁∥2

𝜸 2
=

∑ | P |
𝑗=1

𝜸2

𝑗
𝝁2

𝑗
. Therefore, the dual variable will move towards

the directions of the providers with fewer exposures, and the primal

variable x𝑡 will move to a better solution.

Note that the projection step in line 14 can be efficiently solved

using convex optimization solvers [5] since D is coordinate-wisely

symmetric.

min

𝝁∈D
∥𝝁 − 𝝁𝑡 ∥2

𝜸 2
= min∑

𝑝∈P
(𝝁𝑝𝜸𝑝 − 𝝁𝑝𝜸𝑝 )2

s.t.

𝑚∑︁
𝑗=1

𝜸 𝑗𝝁 𝑗 + _ ≥ 0, ∀𝑚 = 1, 2, . . . , |P |,

where 𝝁 satisfies: 𝜸1𝝁1 ≤ 𝜸2𝝁2 ≤ · · · , ≤ 𝜸 | P |𝝁 | P | .
We provide a regret bound on Regret(ℎ) in Theorem 3 but defer

the proof to Appendix A.3 due to space limit. Intuitively, larger

ranking size 𝐾 and time 𝑇 will lead to larger biases in P-MMF.

Theorem 3 (Regret Bound). Assume that the function ∥ · ∥2

𝜸 2
is

𝜎-strong convex and there exists a constant 𝐺 ∈ R+ and 𝐻 > 0 such
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Algorithm 1: Online learning of P-MMF

Input: User arriving order {𝑢𝑖 }𝑁𝑖=1
, time-separate size 𝑇 , ranking

size 𝐾 , user-item preference score 𝑠𝑢,𝑖 ,∀𝑢, 𝑖 , item-provider

adjacent matrix A, maximum resources 𝜸 and the trade-off

coefficient _.

Output: The decision variables {x𝑖 , 𝑖 = 1, 2, . . . , 𝑁 }
1: for 𝑛 = 1, · · · , 𝑁 /𝑇 do
2: Initialize dual solution 𝝁1 = 0, remaining resources 𝜷1 = 𝜸 ,

and momentum gradient g0 = 0.

3: for 𝑡 = 1, · · · ,𝑇 do
4: User 𝑢𝑛𝑇+𝑡 arrives

5: m𝑝 =

{
0, 𝜷𝑡𝑝 > 0

∞, otherwise

6: // Make the recommendation:
7: x𝑡 = arg maxx𝑡 ∈X

[
𝑔(x𝑡 )/𝑇 − (A(𝝁𝑡 +m))⊤ x𝑡

]
8: 𝜷𝑡+1 = 𝜷𝑡 − A⊤x𝑡
9: e𝑡 = arg maxet≤𝜷𝑡 𝑟

∗ (−𝝁t)
10: g̃𝑡 = −A⊤x𝑡 + e𝑡
11: g𝑡 = 𝛼 g̃𝑡 + (1 − 𝛼)g𝑡−1

12: 𝝁𝑡+1 = arg min𝝁∈D
[
⟨g𝑡 , 𝝁⟩ + [∥𝝁 − 𝝁𝑡 ∥2

𝜸 2

]
13: end for
14: end for

that ∥𝑔𝑡 ∥ < 𝐺 , ∥𝝁𝑡 − 𝝁0∥2

𝜸 2
≤ 𝐻 .. Then, the regret can be bounded

as follows:

Regret(ℎ) ≤ 𝐾 (1 + _𝑟 + 𝑟 )
min𝑝 𝜸𝑝

+ 𝐻
[
+ 𝐺2

(1 − 𝛼)𝜎 [ (𝑇 − 1) + 𝐺2

2(1 − 𝛼)2𝜎[
,

(6)

where 𝑟 is the upper bound of MMF regularzier, and in practice, 𝑟 ≤ 1.

Setting the learning rate as [ = 𝑂 (𝑇 −1/2), we can obtain a sub-

linear regret upper bound of order 𝑂 (𝑇 1/2) of magnitude.

5 EXPERIMENT
We conducted experiments to show the effectiveness of the pro-

posed P-MMF for provider-fair recommendations. The source code

and experiments have been shared at github
2
.

5.1 Experimental settings
5.1.1 Datasets. The experiments were conducted on four large-

scale, publicly available recommendation datasets, including:

Yelp3: a large-scale businesses recommendation dataset. We only

utilized the clicked data, which is simulated as the 4-5 star rating

samples. The cities of the items are considered as providers. It has

154543 samples, which contains 17034 users, 11821 items and 23

providers.

Amazon-Beauty/Amazon-Baby: Two subsets (beauty and dig-

ital music domains) of Amazon Product dataset
4
. We only utilized

the clicked data, which is simulated as the 4-5 star rating samples.

Also, the brands are considered as providers. They has 49217/59836

2
https://github.com/XuChen0427/P-MMF. For the MindSpore [12] version, please

see https://gitee.com/mindspore/models/tree/master/research/recommend/pmmf

3
https://www.yelp.com/dataset

4
http://jmcauley.ucsd.edu/data/amazon/

samples, which contains 9625/11680 users, 2756/2687 items and

1024/112 providers.

Steam5
[24]:We used the data for gamed played for more than 10

hours in our experiments. The publishers of games are considered

as providers. It has 29530 samples, which contains 5902 users, 591

items and 81 providers.

As a pre-processing step, the users, items, and providers who in-

teracted with less than 5 items/users were removed from all dataset

to avoid the extremely sparse cases. We also removed the providers

associated with less than 5 items.

5.1.2 Evaluation. We sorted all the interactions according to the

time and used the first 80% of the interactions as the training data

to train the base model (i.e., BPR [39]). The remaining 20% of in-

teractions were used as the test data for evaluation. Based on the

trained base model, we can obtain a preference score 𝑠𝑢,𝑖 for each

user-item pair (𝑢, 𝑖). The chronological interactions in the test data

were split into interaction sequences where the horizon length was

set to 𝑇 . We calculated the metrics separately for each sequence,

and the averaged results are reported as the final performances.

As for the evaluation metrics, the performances of the models

were evaluated from three aspects: user-side preference, provider-

side fairness, and the trade-off between them. As for the user-

side preference, following the practices in [47], we utilized the

NDCG@K, which is defined as the ratio between the sum of

position-based user-item scores [47] in the original ranking list

L𝐾 (𝑢𝑡 ) and that in the re-ranked list L𝐹
𝐾
(𝑢𝑡 ):

NDCG@K =
1

𝑇

𝑇∑︁
𝑡=1

∑
𝑖∈L𝐾 (𝑢𝑡 ) 𝑠𝑢𝑡 ,𝑖/log(rank𝑖 + 1)∑
𝑖∈L𝐹

𝐾
(𝑢𝑡 ) 𝑠𝑢𝑡 ,𝑖/log(rank𝐹𝑖 + 1)

,

where rank𝑖 and rank
𝐹
𝑖
are the ranking positions of the item 𝑖 in

L𝐾 (𝑢𝑡 ) and L𝐹
𝐾
(𝑢𝑡 ), respectively.

As for the provider fairness, we directly utilized the definition

of MMF in Section 3 as the metric:

MMF@𝐾 = min

𝑝∈P


𝑇∑︁
𝑡=1

∑︁
𝑖∈L𝐹

𝐾
(𝑢𝑡 )
I(𝑖 ∈ I𝑝 )/𝜸𝑝

 ,
where I(·) is the indicator function.

As for the trade-off performance, we used the online objective

traded-off with Equation (3):

𝑊_@𝐾 =
1

𝑇

𝑇∑︁
𝑡=1

©«
∑︁

𝑖∈L𝐹
𝐾
(𝑢𝑡 )

𝑠𝑢𝑡 ,𝑖
ª®®¬ + _ ·MMF@𝐾,

where _ ≥ 0 is the trade-off coefficient.

5.1.3 Baselines. The following representative provider fair re-

ranking models were chosen as the baselines: FairRec [35] and
FairRec+ [8] aimed to guarantee at least Maximin Share (MMS)

of the provider exposures. CPFair [32] formulated the trade-off

problem as a knapsack problem and proposed a greedy solution.

We also chose the following MMF models: Welf [16] use the
Frank-Wolfe algorithm to maximize the Welfare functions of worst-

off items. However, it is developed under off-line settings;RAOP [5]

5
http://cseweb.ucsd.edu/~wckang/Steam_games.json.gz

https://github.com/XuChen0427/P-MMF
https://gitee.com/mindspore/models/tree/master/research/recommend/pmmf
https://www.yelp.com/dataset
http://jmcauley.ucsd.edu/data/amazon/
http://cseweb.ucsd.edu/~wckang/Steam_games.json.gz
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is a state-of-the-art online resource allocation method. We applied

it to the recommendation by regarding the items as the resources

and users as the demanders.

We also compared the proposed P-MMF with two heuristic MMF

baselines: 𝐾-neighbor: at each time step 𝑡 , only the items associ-

ated to the top-𝐾 providers with the least cumulative exposure are

recommended;min-regularizer: at each time step 𝑡 , we add a regu-

larizer that measures the exposure gaps between the target provider

and the worst-providers. Appendix A.4 shows the algorithm details.

5.1.4 Implementation details. As for the hyper-parameters in all

models, the learning rate was tuned among [1𝑒 − 2, 1𝑒 − 4]/𝑇 1/2

and the momentum coefficient 𝛼 was tuned among [0.2, 0.6]. For
the maximum resources (i.e., the weights)𝜸 , following the practices
in [47], we set 𝜸 based on the number of items provided by the

providers: 𝜸𝑝 = 𝐾𝑇[ |I𝑝 |
/
|I |, where [ is the factor controlling the

richness of resources. In all the experiments, we set [ = 1 + 1/|P|.
We implemented P-MMF with both CPU and GPU versions based

on cvxpy [15] and its PyTorch version [4], respectively.

5.2 Simulation on a small dataset
Note that Problem (2) can use MMF or PF as its regularizer, though

directly solving it on large-scale datasets is difficult. To verify the

correctness of the formulation and to investigate different impacts

of MMF-based and PF-based regularizers on provider fair recom-

mendation, we first conducted a numerical simulation using 5% of

the Yelp data, which consists of 844 users, 813 items, 10 providers,

and with the length of the horizon 𝑇 = 256 .

Specifically, we solved the Problem (2) with PF based or MMF

based regularizers (i.e., setting their provider weights as even dis-

tribution 𝜸𝑝 = 𝐾𝑇,∀𝑝 ∈ P), using the solver cvxpy [15]. At each

time 𝑡 , after receiving the recommendation decision variable x𝑡 , we
calculated the overall provider exposure e on the dataset. Then the

Lorenz curves [19] of provider exposures were drawn and shown

in Figure 3. The Lorenz curve is often used to represent exposure

distribution. Here it shows the proportion of overall exposure per-

centage assumed by the bottom 𝑥% providers. In other words, for

the bottom 𝑥% providers, what percentage (𝑦%) of the total expo-

sures they have. Note that the diagonal line to the upper right is

known as the absolute fair line.

From the curves shown in Figure 3, we can observe that when the

_ → ∞ (i.e., only consider provider’s fairness), both PF and MMF

can achieve the expected proportion 𝜸 (i.e., even exposures here).

However, after considering the user preference, the MMF-based

regularizer tends to consider the worst providers’ exposure first,

while PF does not. For example, when the trade-off coefficient _

changes among [0.01, 0.05, 0.1], 60% of the least exposure providers

will increase [18.81%, 18.96%, 12.58%] exposures by MMF. If using

PF-based regularizer, then the increased exposure ratios become

[10.1%, 16.27%, 9.58%]. The results verified that formulating recom-

mendations as a resource allocation problem regularized by MMF

leads to better provider-fair recommendations than PF.

5.3 Experimental results on full datasets
In this section, we conducted the experiments with the online algo-

rithm developed in Section 4.2. In all of the experiments, BPR [39]

was chosen as the base ranking model for generating preference
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Figure 3: The Lorenz curves of provider exposure with PF
regularizer (a) and MMF regularizer (b), respectively. The
experiments were conducted based on 5% of the Yelp dataset.

scores. We set the length of the horizon 𝑇 = 256.

Table 1 reports the experimental results of P-MMF and the base-

lines on all datasets in terms of the metric𝑊1@𝐾 . Underlined num-

bers mean the best-performed baseline. To make fair comparisons,

all the baselines were tuned and used𝑊1@𝐾 as the evaluation

metric. Note that similar experiment phenomena has also been

observed on other _ values.

From the reported results, we found that P-MMF outperformed

all of the PF-based baselines in terms of 𝑊1@𝐾 (𝐾 = 5, 10, 20),

verified that P-MMF can give supports to the poor-conditioned

providers. We also observed that P-MMF outperformed all the MMF-

based baselines, indicating P-MMF’s effectiveness in enhancing

provider fairness while keeping high user preference.

Figure 4 shows the Pareto frontiers [30] of NDCG@K and

MMF@K on four datasets with different ranking size 𝐾 . The Pareto

frontiers were drawn by tuning different parameters of the models

and choosing the (NDCG@K, MMF@K) points with the best per-

formances. In the experiment, we selected the baselines of CPFair,

min-regularizer, Welf, and ROAP, which achieved relatively good

performances among all baselines.

From the Pareto frontiers, we can see that the proposed P-MMF

Pareto dominated the baselines (i.e., the P-MMF curves are at the

upper right corner). Pareto dominance means that under the same

NDCG@K level, P-MMF achieved better MMF@K; Under the same

MMF@K level, P-MMF achieved better NDCG@K. The results

demonstrate that P-MMF splendidly improves the utilities of poor-

conditioned providers without sacrificing users’ utilities too much.

5.4 Experiment analysis
We also conducted experiments to analyze P-MMF on Yelp.

5.4.1 Ablation study on different base models. P-MMF and other

baselines are re-ranking models which re-rank the results outputted

by a base recommender model. To verify the effectiveness of P-

MMF with different base ranking models, we choose three other

base models to generate user-item preference scores 𝑠𝑢,𝑖 , including

DMF [48] which optimizes the matrix factorization with the deep

neuarl networks; LINE [42] is a matrix factorization model based

on graph embeddings; and LightGCN [22] which builts a user-item

interaction graph and adapts Graph Convolutional Network [49] to

conduct recommendation. All the experiments were also conducted

on the full Yelp dataset with 𝑇 = 256.

Table 2 shows the experimental results of P-MMF with different

base models. We observed that P-MMF consistently outperformed
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Table 1: Performance comparisons between ours and the baselines on Yelp, Beauty, Baby, and Steam. We choose trade-off
co-efficient _ = 1 on three different ranking sizes 𝐾 to investigate the effectiveness of ours.

PF-based baselines MMF-based baselines Our approach

Dataset Metric FairRec FairRec+ CPFair k-neighbor Welf min-regularizer ROAP P-MMF(ours) Improv.

Yelp

𝑊1@5 2.659 2.955 3.366 2.929 2.986 3.296 3.395 3.455 1.8%

𝑊1@10 5.046 5.335 6.124 5.345 5.639 6.125 6.126 6.247 2.0%

𝑊1@20 10.256 10.860 11.370 10.829 11.648 11.600 11.640 11.797 1.3%

Amazon-Beauty

𝑊1@5 2.617 3.783 4.959 3.958 4.820 4.953 4.863 5.034 1.5%

𝑊1@10 5.197 7.244 9.195 7.312 9.166 9.309 9.147 9.434 1.3%

𝑊1@20 10.312 13.492 17.686 13.474 17.650 17.880 17.637 17.983 0.6%

Amazon-Baby

𝑊1@5 2.696 3.377 4.129 3.438 4.344 4.556 4.303 4.583 0.6%

𝑊1@10 5.388 6.499 8.080 6.384 8.187 8.345 8.137 8.440 1.1%

𝑊1@20 10.591 12.193 15.527 11.871 15.480 15.713 15.544 15.873 1.1%

Steam

𝑊1@5 2.953 3.173 3.994 2.992 3.947 4.005 3.915 4.443 10.9%

𝑊1@10 5.486 5.716 7.736 5.479 7.678 8.033 7.893 8.148 1.4%

𝑊1@20 9.915 12.699 14.864 9.724 14.733 15.039 15.081 15.235 1.0%
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Figure 4: Pareto frontier of four different datasets with different top-𝐾 ranking.

the PF-based and MMF-based baselines. The results also verified

that P-MMF is more effective than the baselines in re-ranking the

results outputted by different base models.

5.4.2 Regret bound experiments. To further show the effectiveness

of the P-MMF, we directly compute the regret Regret(ℎ) =𝑊𝑂𝑃𝑇 −
𝑊 , where𝑊𝑂𝑃𝑇 is the oracle performance defined in Equation (1),

and𝑊 is the online performance defined in Equation (3). Due to

the huge computational cost of obtaining 𝑊𝑂𝑃𝑇 on large-scale

datasets, we conducted the experiments on the 5% of the Yelp data

created in Section 5.2. We compared P-MMF with the state-of-the-

art provider-fair online MMF baselines: min-regularizer and ROAP.

The experiments were conducted on ranking size 𝐾 = 10. Note that

in the experiment, we fixed the user arriving size𝑁 , and the regret is

computed through the summation over the 𝑁 /𝑇 samples where𝑇 is

the length of the horizon. According the Theorem 3, the summation

Regret(ℎ) is comparable with 𝑂 (𝑇 1/2𝑁 /𝑇 ) = 𝑂 (𝑁 /𝑇 1/2).
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Table 2: Performance comparisons between ours and the baselines on Yelp with different base recommender models. We choose
trade-off co-efficient _ = 1 on three different ranking sizes 𝐾 to investigate the effectiveness of ours.

PF-based baselines MMF-based baselines Our approach

Base Model Metric FairRec FairRec+ CPFair k-neighbor Welf min-regularizer ROAP P-MMF(ours) Improv.

DMF [48]

𝑊1@5 3.1982 4.087 5.070 4.114 4.981 5.198 5.190 5.272 1.4%

𝑊1@10 6.364 7.829 9.929 7.957 9.867 9.968 9.878 10.003 0.3%

𝑊1@20 12.643 15.148 19.372 15.208 19.292 19.410 19.324 19.448 0.2%

LINE [42]

𝑊1@5 2.323 4.074 5.237 4.269 5.153 5.239 5.159 5.407 3.2%

𝑊1@10 4.614 7.866 10.087 8.099 10.064 10.124 10.042 10.280 1.5%

𝑊1@20 9.164 15.041 19.814 15.829 19.826 19.450 19.723 19.973 0.7%

LightGCN [22]

𝑊1@5 2.729 3.714 4.531 3.963 4.633 4.782 4.718 4.837 1.2%

𝑊1@10 5.468 7.2368 8.982 7.584 8.975 9.016 9.144 9.283 1.5%

𝑊1@20 10.927 13.995 17.799 14.856 17.774 17.812 17.871 18.035 0.9%
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Figure 5: Regret versus time-separate length 𝑇 .

Figure 5 shows the summation Regret(ℎ) curves w.r.t. 𝑇 . Fig-
ure (a) and (b) show the curves when the trade-off co-efficient _

was set as 1 and 0.1, respectively. From Figure 5, we can see that

P-MMF has lower regret bound than other online models, espe-

cially when _ is large. Moreover, we can see that the regret bound

of P-MMF is decreasing with the increase of 𝑇 , which verified the

theoretical analysis results. Similar results have also been observed

for other _ values.

5.4.3 Online inference time. We experimented with investigating

the online inference time of P-MMF and the most practical RS model

DMF [48]. In real recommender systems, the number of providers

is relatively small and steady. However, the number of users and

items is usually huge and grows rapidly. Therefore, we tested the

inference time under CPU and GPU implementations of P-MMF and

DMF w.r.t. the different number of items while keeping the number

of users and providers unchanged. The GPU implementation is

based on PyTorch [34].

Figure 6 reports the curves of inference time (ms) per user ac-

cess w.r.t. item size. We can see that P-MMF with CPU and GPU

versions need only about 20-40ms and 17-18ms for online infer-

ence, respectively. Moreover, we can see that the inference time

of P-MMF did not increase much with the increasing number of

items. For example, by increasing the item size from 0 to 200000,

the P-MMF CPU version only needs a little bit more time (19ms)

for online inference. The inference time for the GPU version al-

most kept unchanged. As for comparisons, DMF’s inference time

increased rapidly: both CPU and GPU versions need much more

time (about 65ms). The phenomenon can be easily explained with

the dual problem analysis in Theorem 1. We see the parameter
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Figure 6: Online inference time per user access under CPU
and GPU implementations w.r.t. the number of total items.

size of P-MMF is provider size, which is far less than the item size

|P | ≪ |I|. Therefore, the online inference time is not sensitive to

item numbers. We conclude that P-MMF can be adapted to the real

online recommendation scenarios efficiently because of its low and

robust online computational cost, even when the number of items

grows rapidly.

6 CONCLUSION
This paper proposes a novel re-ranking model called P-MMF that

aims to balance provider fairness and user preference. Firstly, We

formalize the task as a resource allocation problem regularized by

a max-min fairness metric. Then, to adapt the online scenarios

in the recommendation, we proposed a momentum gradient de-

scent method to conduct online learning for resource allocation in

the dual space. Theoretical analysis showed that the regret of P-

MMF is bounded. Extensive experimental results on four large-scale

datasets demonstrated that P-MMF outperformed the baselines and

Pareto dominated the state-of-the-art provider fair baselines.
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A APPENDIX
A.1 Proof of Theorem 1

Proof. For max-min fairness, we have the regularizer as 𝑟 (e) =
min𝑝∈P

(
e𝑝/𝜸𝑝

)
, we can easily proof that the exposure vector e

can be represented as the dot-product between decision varible x𝑡
and the item-provider adjacent matrix A: e =

∑𝑇
𝑡=1

(
A⊤x𝑡

)
. Then

we treat the e as the auxiliary variable, and the Equation (1) can be

written as:

𝑊𝑂𝑃𝑇 = max

x𝑡 ∈X,e≤𝜸

[
𝑇∑︁
𝑡=1

𝑔(x𝑡 )/𝑇 + _𝑟 (e)
]

𝑠 .𝑡 .e =
𝑇∑︁
𝑡=1

(
A⊤x𝑡

)
,

where X = {x𝑡 |x𝑡 ∈ 0, 1 ∧ ∑
𝑖∈I x𝑡𝑖 = 𝐾}. Then we move the

constraints to the objective using a vector of Lagrange multipliers

𝝁 ∈ R | P |:

𝑊𝑂𝑃𝑇 = max

x𝑡 ∈X,e≤𝜸
min

𝝁∈D

[
𝑇∑︁
𝑡=1

𝑔(x𝑡 )/𝑇 + _𝑟 (e) − 𝝁⊤
(
−e +

𝑇∑︁
𝑡=1

A⊤x𝑡

)]
≤ min

𝝁∈D

[
max

x𝑡 ∈X

[
𝑇∑︁
𝑡=1

𝑔(x𝑡 )/𝑇 − 𝝁⊤
𝑇∑︁
𝑡=1

A⊤x𝑡

]
+ max

e≤𝜸
(
_𝑟 (e) − 𝝁⊤e

) ]
= min

𝝁∈D

[
𝑓 ∗ (A𝝁) + _𝑟∗ (−𝝁)

]
=𝑊𝐷𝑢𝑎𝑙 ,

where D = 𝝁 |𝑟∗ (−𝝁) < ∞} is the feasible region of dual variable

𝝁. According to the Lemma 1 in the Balseiro et al. [5], we have D
is convex and positive orthant is inside the recession cone of D.

□

A.2 Proof of Theorem 2
Proof. We let the variable z𝑝 = (e𝑝/𝜸𝑝 − 1), we have:
𝑟∗ (𝝁) = max

e≤𝜸

[
min

(
e𝑝/𝜸𝑝

)
+ 𝝁⊤e/_

]
= 𝝁⊤𝜸/_ + 1 + max

z𝑝≤0

min(z𝑝 ) + 1/_
∑︁
𝑝∈P

𝝁𝑝𝜸𝑝z𝑝


Let 𝑠 (z) = min𝑝 z𝑝 and v = (𝝁⊙𝜸 )/_, ⊙ is the hadamard product.

Then we define 𝑠∗ (v) = maxz≤0

(
𝑠 (z) + z𝑇 v

)
. We firstly show that

if

∑
𝑝∈S v𝑝 ≥ −1,∀S ∈ P𝑠 , then 𝑠∗ (v) = 0 and z = 0 is the optimal

solution, otherwise 𝑠∗ (v) = ∞.

We can equivalently write D = {v|∑𝑝∈S v𝑝 ≥ −1,∀S ∈ P𝑠 }.
We firstly show that 𝑠∗ (v) = ∞ for v ∉ D. Suppose that there exists

a subset S ∈ P𝑠 such that

∑
𝑝∈S v𝑝 < −1. For any 𝑏 > 1, we can

get a feasible solution:

v𝑝 =

{
−𝑏, 𝑝 ∈ S
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Then, because such solution is feasible and 𝑠 (z) = −𝑏, we obtain
that

𝑠∗ (v) ≥ 𝑠 (z) − 𝑏 (
∑︁
𝑝∈S

v𝑝 ) = −𝑏 (
∑︁
𝑝∈S

v𝑝 + 1) .

Let 𝑏 → ∞, we have 𝑠∗ (v) → ∞.

Then we show that 𝑠∗ (𝝁) = 0 for v ∈ D. Note that z = 0 is

feasible. Therefore, we have

𝑠∗ (v) ≥ 𝑠∗ (0) = 0.

Then we have z ≤ 0 and without loss of generality, that the vector z
is sorted in increasing order, i.e., z1 ≤ z2, · · · , ≤ z | P | . The objective
value is

𝑠∗ (v) = z1 +
∑︁
𝑗∈ |P |

z𝑗v𝑗

=

| P |∑︁
𝑗=1

(
z𝑗 − z𝑗+1

) (
1 +

𝑗∑︁
𝑖=1

v𝑗

)
≤ 0.

Thus we can have 𝑠∗ (𝝁) = 0 for v ∈ D and we have

𝑟∗ (−𝝁) = 𝝁⊤𝜸/_ + 1.

□

A.3 Proof of Theorem 3
Proof. Firstly, in practice, we normalize the user-item prefer-

ence score 𝑠𝑢,𝑖 to [0, 1]. Therefore, ∑𝑇𝑡=1
𝑔(x𝑡 )/𝑇 ≤ 𝐾 . In max-min

regularizer 𝑟 (e). Let’s abbreviate its upper bound to 𝑟 . In practice,

𝑟 ≤ 1 We have

𝑊𝑂𝑃𝑇 ≤ 𝐾 + _𝑟 . (7)

We consider the stopping time 𝜏 of Algorithm 1 as the first time

the provider will have the maximum exposures, i.e.

𝜏∑︁
𝑡=1

A⊤x𝑡 ≥ 𝜸 .

Note that is 𝜏 a random variable.

Similarly, followed the prove idea of Balseiro et al. [5], First, we

analysis the primal performance of the objective function. Second,

we bound the complementary slackness term by the momentum

gradient descent. Finally, We conclude by putting it to achieve the

final regret bound.

Primal performance proof: Consider a time 𝑡 < 𝜏 , the recom-

mender action will not violate the resource constraint. Therefore,

we have:

𝑔(x𝑡 )/𝑇 = 𝑔∗ (A𝝁𝑡 ) + _𝝁𝑡𝑇A⊤x𝑡 ,
and we have e𝑡 = arg maxe≤𝜸 {𝑟 (e) + 𝝁⊤e/_}

𝑟 (e𝑡 ) = 𝑟∗ (−𝝁) − 𝝁t
𝑇 e𝑡/_.

We make the expectations for the current time step 𝑡 for the

primal functions:

E [𝑔(x𝑡 )/𝑇 + _𝑟 (e𝑡 )] = E
[
𝑔∗ (A𝝁𝑡 ) + 𝝁t

𝑇A⊤x𝑡 + _𝑟∗ (−𝝁) − 𝝁t
𝑇 e𝑡

]
=𝑊 (𝝁𝑡 ) − E

[
𝝁𝑇𝑡 (−A⊤x𝑡 + e𝑡 )

]
.

Consider the process 𝑍𝑡 =
∑𝑇
𝑗=1

𝝁𝑡
𝑗
(−A⊤x𝑡 + e𝑡 ) −

E
[
𝝁𝑇𝑡 (−A⊤x𝑡 + e𝑡 )

]
is a martingale process. The Optional Stop-

ping Theorem in martingale process [46] implies that E [𝑍𝜏 ] = 0.

Consider the variable𝑤𝑡 (𝝁𝑡 ) = 𝝁𝑇𝑡 (−A⊤x𝑡 + e𝑡 ), we have

E

[
𝜏∑︁
𝑡=1

𝑤𝑡 (𝝁𝑡 )
]
= E

[
𝜏∑︁
𝑡=1

E [𝑤𝑡 (𝝁𝑡 )]
]
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Algorithm 2: Online learning of Min-Regularizer

Input: User arriving set {𝑢𝑖 }𝑁𝑖=1
, time-separate size 𝑇 , ranking

size 𝐾 , user-item preference score 𝑠𝑢,𝑖 ,∀𝑢, 𝑖 , item-provider

adjacent matrix A, maximum resources 𝜸 and the trade-off

coefficient _.

Output: The decision variables {x𝑖 , 𝑖 = 1, 2, · · · , 𝑁 }
1: for 𝑛 = 1, · · · , 𝑁 /𝑇 do
2: Initial dual solution 𝝁1 = 0. remain resources 𝜷1 = 𝜸 and

momentum gradient g0 = 0.
3: for 𝑡 = 1, · · · ,𝑇 do
4: Receive 𝑢𝑛𝑇+𝑡
5:

m𝑝 =

{
0, 𝜷𝑡𝑝 > 0

−∞, otherwise.

6: // Make the recommendation:
7:

x𝑡 = arg max

x𝑡 ∈X

[
𝑔(x𝑡 ) − _

(
A(e − (min

𝑝
e𝑝 [1, 1, . . . , 1]⊤) +m)

)⊤
x𝑡

]
8: // Update the remaining resources:
9:

𝜷𝑡+1 = 𝜷𝑡 − A⊤x𝑡
10: end for
11: end for

Moreover, in MMF, the dual function𝑊𝐷𝑢𝑎𝑙 is convex proofed

in Theorem 1, we have

E

[
𝜏∑︁
𝑡=1

𝑔(x𝑡 )/𝑇 + _𝑟 (e𝑡 )
]
= E

[
𝜏∑︁
𝑡=1

𝑊𝐷𝑢𝑎𝑙 (𝝁𝑡 )
]
− E

[
𝜏∑︁
𝑡=1

𝑤𝑡 (𝝁𝑡 )
]

≤ E [𝜏𝑊𝐷𝑢𝑎𝑙 (𝝁𝜏 )] − E
[
𝜏∑︁
𝑡=1

𝑤𝑡 (𝝁𝑡 )
]
,

(8)

where 𝝁𝜏 =
∑𝜏
𝑡=1

𝝁𝑡/𝜏 .
Complementary slackness proof Then we aim to proof the

complementary slackness

∑𝑇
𝑡=1

𝑤𝑡 (𝝁𝑡 ) −𝑤𝑡 (𝝁) is bounded. Sup-
pose there exists 𝐺, 𝑠.𝑡 . the gradient norm is bounded ∥g̃𝑡 ∥ ≤ 𝐺 .

Then we have:

𝜏∑︁
𝑡=1

𝑤𝑡 (𝝁𝑡 ) −𝑤𝑡 (𝝁) ≤
_2

[
+ 𝐺2

(1 − 𝛼)𝜎 [ (𝜏 − 1) + 𝐺2

2(1 − 𝛼)2𝜎[
, (9)

where the project function ∥𝝁 − 𝝁𝑡 ∥2

𝜸 is 𝜎−strongly convex.

Next we prove the inequality in Equation (9). According to the

Theorem 1 in [6], we have

∥g𝑡 ∥2

2
= ∥(1 − 𝛼)

𝑡∑︁
𝑠=1

𝛼𝑡−𝑠 (g̃𝑠 )∥2

2
≤ 𝐺2,

and

𝜏∑︁
𝑡=1

𝑤𝑡 (𝝁𝑡 )−𝑤𝑡 (𝝁) ≤
∥𝝁𝑡 − 𝝁0∥2

𝜸 2

[
+ 𝐺2

(1 − 𝛼)𝜎 [ (𝜏−1)+ 𝐺2

2(1 − 𝛼)2𝜎[
,∀𝝁 .

Assuming there exists 𝐻 > 0, s.t. ∥𝝁𝑡 − 𝝁0∥2

𝜸 2
≤ 𝐻 . According

to the Cauchy-Schwarz’ inequality. The results follows. Let 𝑀 =
𝐻
[ + 𝐺2

(1−𝛼 )𝜎 [ (𝑇 − 1) + 𝐺2

2(1−𝛼 )2𝜎[
. We now choose a proper 𝝁, s.t.

the complementary stackness can be further bounded.

For 𝝁 = 𝝁 + \ , where \ ∈ R |𝑃 | is non-negative to be deter-

mined later and 𝝁 = arg max𝝁 −𝝁⊤ (
∑𝑇
𝑖=1

A⊤x𝑡 )/_. According to

the constraint e =
∑𝑇
𝑖=1

A⊤x𝑡 , we have that
𝑇∑︁
𝑡=1

(𝑟 (e𝑡 ) + 𝝁⊤e𝑡_) ≤ 𝑟∗ (−𝝁) = 𝑟 (
𝑇∑︁
𝑖=1

A⊤x𝑡 ) + 𝝁𝑇 (
𝑇∑︁
𝑖=1

A⊤x𝑡 )/_.

Note that in proof of Theorem 2, the feasible region D is recession

cone, therefore, 𝝁 ∈ D.

Therefore, we have

𝜏∑︁
𝑡=1

𝑤𝑡 (𝝁𝑡 ) =
𝑇∑︁
𝑡=1

𝑤𝑡 (𝝁) −
𝑇∑︁

𝑡=𝜏+1

𝑤𝑡 (𝝁) +
𝜏∑︁
𝑡=1

𝑤𝑡 (\ ) +𝑀. (10)

Put them together: Under the max-min fair, we obtain that

𝑊𝑂𝑃𝑇 =
𝜏

𝑇
𝑊𝑂𝑃𝑇 + 𝑇 − 𝜏

𝑇
𝑊𝑂𝑃𝑇 ≤ 𝜏𝑊𝐷𝑢𝑎𝑙 (𝝁𝜏 ) + (𝑇 − 𝜏) (𝐾 + _𝑟 ).

(11)

Therefore, combining Eq. (10,12,13) the regret Regret(ℎ) can be

bounded as:

Regret(ℎ) = E [𝑊𝑂𝑃𝑇 −𝑊 ]

≤ E
[
𝑊𝑂𝑃𝑇 −

𝜏∑︁
𝑡=1

(
𝑔(x𝑡 )/𝑇 − _𝑟 (A⊤x𝑡/𝜸 )

) ]
≤ E

[
𝑊𝑂𝑃𝑇 − 𝜏𝑊𝐷𝑢𝑎𝑙 (𝝁𝑡 ) +

𝜏∑︁
𝑡=1

𝑤𝑡 (𝝁𝑡 ) +
𝑇∑︁
𝑡=1

(e𝑡 − A⊤x𝑡 )
]

≤ E
[
(𝑇 − 𝜏) (𝐾 + _𝑟 ) +

𝑇∑︁
𝑡=1

𝑤𝑡 (𝝁) +
𝜏∑︁
𝑡=1

𝑤𝑡 (\ )
]
+𝑀

≤ (𝑇 − 𝜏) (𝐾 + _𝑟 + _𝐾) +
𝜏∑︁
𝑡=1

𝑤𝑡 (\ ) +𝑀.

(12)

Let 𝐶 = 𝐾 + _𝑟 + _𝐾 , then setting the \ = 𝐶min𝑝 𝜸𝑝u𝑝 , where
u𝑝 is the p-th unit vector. We have

𝜏∑︁
𝑡=1

𝑤𝑡 (\ ) = 𝐶/(min

𝑝
𝜸𝑝 ) −𝐶 (𝑇 − 𝜏) .

Then the Regret(ℎ) ≤ 𝑀+𝐶/(min𝑝 𝜸𝑝 ), whenwe set[ = 𝑂 (𝑇 −1/2),
the Regret(h) is comparable with 𝑂 (𝑇 1/2). The result follows.

□

A.4 Algorithm for Min-reguarlizer
In this section, we proposed a heuristic method for provider MMF

online application, named Min-reguarlizer. It has a regularizer that

measures the exposure gaps between the target provider and the

worst-providers. The detailed algorithm is shown in Algorithm 2.

The notations are the same as P-MMF in Algorithm 1.
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