
Artificial Intelligence 334 (2024) 104162

Contents lists available at ScienceDirect

Artificial Intelligence

journal homepage: www.elsevier.com/locate/artint

An extensive study of security games with strategic informants

Weiran Shen a,∗, Minbiao Han d, Weizhe Chen b, Taoan Huang b, Rohit Singh c, 
Haifeng Xu d, Fei Fang e

a Renmin University of China, China
b University of Southern California, United States of America
c World Wide Fund for Nature, Singapore
d University of Chicago, United States of America
e Carnegie Mellon University, United States of America

A R T I C L E I N F O A B S T R A C T

Keywords:

Security game

Informant

Community engagement

Stackelberg game

Over the past years, game-theoretic modeling for security and public safety issues (also known as 
security games) have attracted intensive research attention and have been successfully deployed 
in many real-world applications for fighting, e.g., illegal poaching, fishing and urban crimes. 
However, few existing works consider how information from local communities would affect the 
structure of these games. In this paper, we systematically investigate how a new type of players – 
strategic informants who are from local communities and may observe and report upcoming attacks 
– affects the classic defender-attacker security interactions. Characterized by a private type, each 
informant has a utility structure that drives their strategic behaviors.

For situations with a single informant, we capture the problem as a 3-player extensive-form game 
and develop a novel solution concept, Strong Stackelberg-perfect Bayesian equilibrium, for the 
game. To find an optimal defender strategy, we establish that though the informant can have 
infinitely many types in general, there always exists an optimal defense plan using only a linear 
number of patrol strategies; this succinct characterization then enables us to efficiently solve the 
game via linear programming. For situations with multiple informants, we show that there is 
also an optimal defense plan with only a linear number of patrol strategies that admits a simple 
structure based on plurality voting among multiple informants.

Finally, we conduct extensive experiments to study the effect of the strategic informants and 
demonstrate the efficiency of our algorithm. Our experiments show that the existence of such 
informants significantly increases the defender’s utility. Even though the informants exhibit 
strategic behaviors, the information they supply holds great value as defensive resources. 
Compared to existing works, our study leads to a deeper understanding on the role of informants 
in such defender-attacker interactions.
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1. Introduction1

Protecting wildlife and other natural resources against illegal activities, such as poaching, remains one of the world’s most 
common pressing challenges [2,3]. However, due to insufficient funding and other supportive resources, the current low number of 
defensive resources (compared with the number of targets that need protection) makes protection even harder [4]. The significant 
disparity between protection needs and available defensive resources has led to intensive research efforts in the allocation of resources 
to fight these illegal activities.

Existing work on security games models the interaction between the defensive units (such as rangers) and their opponents (such 
as poachers and illegal loggers) as a defender-attacker security game [2,5,6], and develops algorithms to compute an optimal strategy 
to protect those natural resources for the defender. The classic defender-attacker security game is a game played by two players, 
who are referred to as the defender and the attacker. The defender moves first by committing to a defense plan. Under conventional 
security game terminology, the term “patrol strategy” is referred to as how the defender allocates their defensive units to the targets. 
However, in this paper, the strategic behaviors of the defender are notably more intricate (e.g., additional design of informant 
message set). In order to avoid potential ambiguities, we employ the term “defense plan” to describe this complicated defender 
strategy with an informant message set. However, we still utilize the term “patrol strategy” to specifically allude to the distribution 
of defensive units after receiving messages from the informants. After observing the defense plan, the attacker responds by attacking 
some target. Perhaps surprisingly, an important factor, community engagement, has thus far largely been ignored in the literature 
despite the wide real-world practice of employing local communities for the assistance of surveillance. This paper aims to bridge 
this gap by developing richer security game models to incorporate information from local communities, and designing better defense 
tactics.

An example motivating domain is the green security game for preventing illegal poaching in national parks. When there are no 
detectable traces of poaching activity in the landscape, encouraging local communities to engage and serve as a surveillance role has 
been listed as one of the six pillars towards zero-poaching [7], and also plays an important role in other domains, such as fighting 
urban crime [8]. However, the local communities may have their own utility structures and can be unwilling to cooperate. For 
example, if some poaching activities are observed around a farm, the farmer may not give out such information, or even provide 
false information, if the farm is suffering loss from the human-wildlife conflict, where there is a direct or indirect negative interaction 
between wild animals and human activities [9]. Such strategic behavior poses additional challenges in designing better strategies for 
the defender.

To capture these strategic behaviors, we introduce a new kind of player – strategic informants – to the standard security game and 
aim to understand how this new player would affect the original game between the defender and the attacker. The informants may 
have different types that correspond to different utility structures. We first consider the single informant case. We model the game 
as an extensive-form game as it involves sequential movements of the players and view the informant as an extra layer between the 
defender and the attacker: after the attacker sets a target but before the attack is successfully completed, the informant strategically 
chooses whether to report and what message to report to the defender. When making a defense plan, the defender needs to take the 
strategic reasoning of both the attacker and the informants into consideration.

Given the structure of the 3-player game, we propose a new solution concept called strong Stackelberg-perfect Bayesian equilibrium 
(SS-PBE). Essentially, such a solution concept is motivated by viewing the game from two different levels. At a lower level, we choose 
the perfect Bayesian equilibrium as the solution to the subgame between the attacker and the informant. At a higher level, we view 
the game as a Stackelberg game between the defender and the other two players. We show that the defender can actually enforce 
the best perfect Bayesian equilibrium of the subgame by introducing a slight perturbation to the defense plan.

The defender’s defense plan contains 3 components: the set of messages that an informant can report, the routine patrol strategy, 
and the informed patrol strategy. The routine patrol strategy is used when the informant reports nothing, and the informed patrol 
strategy is a function that maps the reported messages to an actual coverage probability of the targets.

An informant may report different messages under different situations. At first glance, the number of possible messages the 
defender needs to design seems to depend on the number of different informant types. This makes the problem intractable as there 
can be infinitely many different informant types. We borrow tools from the mechanism design literature and show that a variant of 
the revelation principle holds in our setting. Based on that, in the case with a single informant, we reduce the number of messages 
to 𝑛 + 1 (𝑛 is the number of targets) in the case with a single informant, which does not depend on the number of informant types. 
Following the convention of solving Stackelberg games, we formulate the problem of finding the optimal defense plan in this case as 
solving multiple linear programs.

In the case of multiple informants, the information provided by the informants may not coincide as they may have conflicting 
interests. If the number of informants is constant, the optimal defense plan can still be found efficiently by solving a set of linear 

1 A preliminary version of the work [1] appeared in Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. In the preliminary 
version, we focused on analyzing security games with a single strategic informant. This article substantially extends the preliminary version by adding a series of 
results on multiple strategic informants (Section 4 & 5; pages 9 to 17, 18 to 20). First of all, we show the properties of the single strategic informant case such as the 
revelation principle can carry over to the case with multiple strategic informants. Based on this, we develop a linear program to solve for the optimal defense plan with 
multiple informants by taking into account all possible message profiles (Program (11)). However, it turns out this problem becomes much more complicated with 
multiple informants because the size of all message profiles grows exponentially with the number of informants. In order to overcome the computational hardness, we 
propose a novel plurality voting defense plan (Program (17)). Then we show how the optimal plurality voting plan can be computed efficiently by linear programming 
while still providing the optimal defender utility (Theorem 7). Finally, we conduct additional experiments on the security game with multiple strategic informants 
2

(Section 5.4 & 5.5) to demonstrate the influence of multiple informants.
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programs. However, if the number of informants is not constant, we cannot afford to enumerate possible message combinations 
reported by the informants. To handle this case, we propose a voting-based defense plan. Our defense plan scales well with respect 
to the number of informants and is optimal.

To show the effect of strategic informants, we conduct experiments to evaluate both the defender’s and the attacker’s utility and 
the number of defensive resources needed, by changing the informant type distribution. Our experiments also show that the defender 
can suffer a huge utility loss if they fail to take into account the informants’ strategic behaviors, which implies that the informants 
and their strategic behaviors play an important role in the game. Our results provide a useful guideline for law enforcement agencies 
when facing strategic informants.

1.1. Related works

The most relevant topic is the Stackelberg games [10,11]. Stackelberg Security Game [2] has been applied to a variety of security 
problems [12,5,13,6]. Previous work on green security games with community engagement [14] has considered the presence of non-

strategic informants, whereas we consider informants with their own utility structures. Security games with the presence of alarm 
systems, drones, and cameras that can provide real-time information have also been studied [15–17]. These works differ from ours 
in that the informants in our setting can have strategic behaviors. Gan et al. [18] studies security games with deceptive attackers. Xu 
et al. [19], Bondi et al. [20] study a variant of the security game that considers sensors with detection and signaling capability. All 
these papers involve additional information processing of the defender. However, none of them considers information from a third 
party.

Our work also makes use of the revelation principle [21] in mechanism design and is closely related to finding equilibria in 
extensive form games [22].

In criminology, Smith and Humphreys [23], Moreto [24], Duffy et al. [25] investigate the role of community engagement in 
wildlife conservation. Based on the network of reliable informants, Linkie et al. [26], Gill et al. [27] show the positive effects of 
community-oriented strategies. However, none of these works consider the effects of strategic informants and how to design the 
defender’s strategies in the presence of such informants.

In evolutionary game theory, Short et al. [28] shows the effect of the presence of informants and Short et al. [29] solves for the 
optimal informant recruitment strategy.

2. Preliminaries

We consider a game with 3 different parties: the defender, the attacker, and the informants. Let 𝑇 = {1, 2, … , 𝑛} be the set of 
targets and assume that the defender has 𝑟 defensive resources. We say a target is covered, if the defender sends a defensive resource 
to protect it. When a covered target 𝑡 is attacked, the attacker gets penalty 𝑃 𝑎

𝑡
and the defender gets reward 𝑅𝑑

𝑡
; Otherwise, if an 

uncovered target is attacked, the attacker gets reward 𝑅𝑎
𝑡

and the defender gets penalty 𝑃𝑑
𝑡

. We assume 𝑅𝑑
𝑡
> 𝑃 𝑑

𝑡
and 𝑅𝑎

𝑡
> 𝑃 𝑎

𝑡
, which 

means both agents strictly prefer the reward over penalty for all 𝑡.
Suppose that when the attacker plans to attack, the attacked target 𝑡 may be observed by an informant with probability 𝑝𝑤. The 

attacker’s strategy is defined as 𝑦 ∈ Δ(𝑇 ) = {𝑦 ∶
∑

𝑡∈𝑇 𝑦𝑡 = 1}.2 Each informant has a private type 𝜃, which is randomly drawn from 
a finite set Θ of all possible informant types according to a publicly known probability distribution 𝑝(𝜃).3 An informant with type 𝜃
gets utility 𝑈𝑐

𝑡
(𝜃) (𝑈𝑢

𝑡
(𝜃)) if the attacked target 𝑡 is covered (uncovered), and we assume, throughout the paper, that each informant is 

not indifferent to the attack for any target, i.e., 𝑈𝑐
𝑡
(𝜃) ≠𝑈𝑢

𝑡
(𝜃), ∀𝑡, 𝜃. This is because in cases where an informant remains indifferent, 

the defender has the opportunity to acquire helpful information at a minimal cost by offering auxiliary rewards to the informant.

Assume there are 𝑘 informants. The defender’s defense plan is a tuple 𝑑 = (𝑀, 𝑥, 𝑥0) containing a routine patrol strategy 𝑥0 (when 
no messages are reported), a set of possible messages 𝑀 , and a patrol strategy 𝑥 ∶𝑀𝑘 ↦ [0, 1]𝑛 that maps the reported messages to 
a patrol strategy, which is an 𝑛-dimensional vector, with each element being the coverage probability of the corresponding target. A 
patrol strategy 𝑥 is feasible if the sum of all elements is less than the number of defensive resources, i.e., 

∑
𝑖 𝑥𝑖(𝑚) ≤ 1, where 𝑚 is any 

reported message profile. The set 𝑀 is defined by the defender, this is because allowing the informant to report arbitrary messages 
can lead to inconsistent or conflicting defense strategies. For simplicity and model tractability, it is typically assumed that 𝑀 is a 
finite set. This allows for the formulation of linear programming (LP) problems to determine optimal defense strategies, where the 
dimension of the LP scales with the size of 𝑀 . It is also common to assume that the defender makes their defense plan public. Making 
the defense plan public is a widely adopted assumption in Stackelberg (security) games [3,30,31], which can enhance transparency 
and communication, allowing potential informants and attackers to understand the defender’s intentions and security measures.

After observing the attack target 𝑡, each informant 𝑖 can choose to send a message 𝑚𝑖 ∈𝑀 to the defender. The defender then 
uses the tip-guided patrol strategy 𝑥(𝑚) against the attacker, where 𝑚 is the reported message profile. We summarize all notations in 
Table 1.

2 We start from this general definition and will later show the optimal attacker strategy can be achieved by a pure strategy, which is also consistent with the 
literature.

3 We note that while there can be an infinite number of types for the informant in general, the relevant informant type is solely determined by whether the 
informant is aligned with the defender or attacker for each target, regardless of their precise utility parameters. Consequently, it is reasonable to simplify the analysis 
3

by considering a finite set of informant types without sacrificing generality.
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Table 1

Notations used in this paper.

𝑇 = {1,2,⋯ , 𝑛} The set of targets

𝑟 The number of defensive resources

𝑃 𝑑
𝑡
∕𝑅𝑑

𝑡
Defender penalty/reward for target 𝑡

𝑃 𝑎
𝑡
∕𝑅𝑎

𝑡
Attacker penalty/reward for target 𝑡

𝑚 ∈𝑀 Messages reported by the informants

𝑥0 ∈ [0,1]𝑛 Routine patrol strategy

𝑥 ∶𝑀𝑘 ↦ [0,1]𝑛 Tip-guided patrol strategy

𝑑 = (𝑀,𝑥,𝑥0) Defender’s defense plan

𝑦 ∈Δ(𝑇 ) Attacker strategy

𝜃 ∈Θ Informant type

𝑝(𝜃) Publicly known prior distribution over informant type

𝑝𝑤 The probability each informant observes the attack

𝑈𝑐
𝑡
(𝜃)∕𝑈𝑢

𝑡
(𝜃) Informant utility when target 𝑡 is covered/uncovered

Θ+(𝑡), Θ−(𝑡) The sets {𝜃 ∶𝑈𝑐
𝑡
(𝜃) > 𝑈𝑢

𝑡
(𝜃)} and {𝜃 ∶𝑈𝑐

𝑡
(𝜃) < 𝑈𝑢

𝑡
(𝜃)}

𝑝+(𝑡), 𝑝−(𝑡) 𝑝+(𝑡) =
∑

𝜃∈Θ+(𝑡) 𝑝(𝜃), 𝑝−(𝑡) =
∑

𝜃∈Θ−(𝑡) 𝑝(𝜃)

Fig. 1. Game tree of the security game with strategic informants, where we omit the step of Nature choosing the informant types.

We assume that the attacker is rational (utility-maximizing) and aware of the existence of strategic informants when deciding the 
attack strategy 𝑦. The type of each informant is private information, i.e., only known to the informant themselves. The goal of the 
defender is to design a defense plan (𝑀, 𝑥, 𝑥0) to maximize their expected utility.

Formally, we consider the security game with strategic community engagement defined below:

Definition 1. The security game with strategic community engagement (Fig. 1) proceeds as follows:

1. The defender announces a defense plan 𝑑 = (𝑀, 𝑥, 𝑥0);
2. Observing the defense plan, the attacker decides on an attack strategy 𝑦, and chooses a target 𝑡 according to 𝑦;

3. If an informant 𝑖 observes 𝑡, they can remain silent or send a message 𝑚𝑖 to the defender (e.g., “Target 𝑡 will be attacked” or 
“The attacker will go south”);

4. According to the reported messages 𝑚, the defender adopts the patrol strategy defined by the announced defense plan.

5. The security resources are allocated according to the chosen patrolling strategy; target 𝑡 is attacked, and the game reaches an 
outcome.

3. The single informant case

In this section, we consider the case with only a single informant. This case is much easier to analyze since we do not need to 
consider the game among the informants. For simplicity, we denote that an informant reports a dummy message ⟂ if the informant 
observes the target but chooses to report nothing. In this case, we assign the value 𝑥0 to the dummy message, meaning 𝑥(⟂) = 𝑥0.

3.1. Solution concept

To establish our solution concept for the above game, we first focus on the subgame between the attacker and the informant while 
the defender’s defense plan (𝑀, 𝑥, 𝑥0) is considered as given and fixed. We call the subgame the “attacker-informant” game. In this 
game, the attacker moves first, and then with probability 𝑝𝑤, the informant observes the attack and chooses a message according to 
their type. We consider perfect Bayesian equilibrium as the solution concept for the subgame.

Definition 2 (Perfect Bayesian equilibrium (PBE)). A perfect Bayesian equilibrium is a solution to an extensive form game if the 
following two conditions are satisfied:

1. Sequential rationality: each player’s strategy is optimal given the player’s belief;
4

2. Belief consistency: each player’s belief is updated according to Bayes’ rule.
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For any target 𝑡 ∈ 𝑇 , any informant type 𝜃 ∈ Θ, and any reported message 𝑚 ∈ 𝑀 , the expected utilities of the attacker, the 
defender, and the informant can be written as:

𝑈𝑎(𝑡,𝑚) =(1 − 𝑝𝑤)[𝑥0𝑡 𝑃
𝑎
𝑡
+ (1 − 𝑥0

𝑡
)𝑅𝑎

𝑡
]+

𝑝𝑤[𝑥𝑡(𝑚)𝑃 𝑎
𝑡
+ (1 − 𝑥𝑡(𝑚))𝑅𝑎

𝑡
], (1)

𝑈𝑑 (𝑡,𝑚) =(1 − 𝑝𝑤)[𝑥0𝑡 𝑅
𝑑
𝑡
+ (1 − 𝑥0

𝑡
)𝑃 𝑑

𝑡
]+

𝑝𝑤[𝑥𝑡(𝑚)𝑅𝑑
𝑡
+ (1 − 𝑥𝑡(𝑚))𝑃 𝑑

𝑡
], (2)

𝑈 (𝑡,𝑚;𝜃) =(1 − 𝑝𝑤)[𝑥0𝑡 𝑈
𝑐
𝑡
(𝜃) + (1 − 𝑥0

𝑡
)𝑈𝑢

𝑡
(𝜃)]+

𝑝𝑤[𝑥𝑡(𝑚)𝑈𝑐
𝑡
(𝜃) + (1 − 𝑥𝑡(𝑚))𝑈𝑢

𝑡
(𝜃)], (3)

where the first part of the utility terms denotes the players’ expected utilities if the informant does not observe the attack, and the 
second part denotes their utilities if the attack is observed.

Lemma 1. Given a defender defense plan (𝑀, 𝑥, 𝑥0), let 𝑚 = 𝑚(𝑡; 𝜃) be any strategy of the informant. There exists an attacker strategy 𝑦, 
such that (𝑦, 𝑚) is a perfect Bayesian equilibrium of the attacker-informant game, if and only if 𝑚 satisfies4:

𝑈𝑖(𝑡,𝑚;𝜃) = max
𝑚′∈𝑀

{𝑈 (𝑡,𝑚′;𝜃)},∀𝑡, 𝜃. (4)

Moreover, for any perfect Bayesian equilibrium (𝑦, 𝑚), the utilities for all three players in the original game only depend on the attacker 
strategy 𝑦.

Proof. (𝑦, 𝑚) is a PBE ⇒ 𝑚 satisfies Equation (4). The informant knows their own type and only the attacker has a belief about 
the informant’s type. And since the attacker moves first and only moves once in the game, their belief will remain as the prior type 
distribution 𝑝(𝜃) during the two-step game. The informant has access to the attacker’s actual action. As (𝑦, 𝑚) is a perfect Bayesian 
equilibrium, by definition, we have ∀𝑡, 𝜃:

𝑚(𝑡;𝜃) ∈ argmax
𝑚

{𝑈 (𝑡,𝑚;𝜃)} =

{
argmax𝑚 𝑥𝑡(𝑚) if 𝑈𝑐

𝑡
(𝜃) >𝑈𝑢

𝑡
(𝜃)

argmin𝑚 𝑥𝑡(𝑚) if 𝑈𝑐
𝑡
(𝜃) <𝑈𝑢

𝑡
(𝜃)

. (5)

𝑚 satisfies Equation (4) ⇒ (𝑦, 𝑚) is a PBE. Since the above equation does not involve the attacker’s strategy 𝑦, any informant 
strategy satisfying Equation (4) is actually a weakly dominant strategy. The above equation also implies that given any type 𝜃, any 
such strategy 𝑚(𝑡; 𝜃) results in the same coverage probability 𝑥𝑡(𝑚) for target 𝑡. On the other hand, when the attacker moves, their 
strategy should optimize the expected utility:

𝐄
𝜃,𝑡
[𝑈𝑎(𝑡,𝑚)] =

∑
𝜃∈Θ

𝑝(𝜃)
∑
𝑡∈𝑇

𝑦(𝑡)
{
(1 − 𝑝𝑤)[𝑥0𝑡 𝑃

𝑎
𝑡
+ (1 − 𝑥0

𝑡
)𝑅𝑎

𝑡
] +

𝑝𝑤[𝑥𝑡(𝑚)𝑃 𝑎
𝑡
+ (1 − 𝑥𝑡(𝑚))𝑅𝑎

𝑡
]
}

=
∑
𝑡

𝑦(𝑡)

{
(1 − 𝑝𝑤)[𝑥0𝑡 𝑃

𝑎
𝑡
+ (1 − 𝑥0

𝑡
)𝑅𝑎

𝑡
]+

𝑝𝑤

[
𝑃 𝑎
𝑡

∑
𝜃

𝑝(𝜃)𝑥𝑡(𝑚) +𝑅𝑎
𝑡

∑
𝜃

𝑝(𝜃)(1 − 𝑥𝑡(𝑚))

]}
.

Thus the attacker’s expected utility only depends on the coverage probability 𝑥𝑡(𝑚) for each 𝑡 and 𝜃. To best respond, the attacker 
only needs to choose any distribution 𝑦 over the set argmax𝑡𝐄𝜃,𝑡[𝑈𝑎(𝑡, 𝑚)].

The above analysis shows that switching to any other strategy satisfying Equation (4) does not change the utilities for both the 
attacker and the informant. Thus in any PBE (𝑦, 𝑚) the expected utilities for both of them only depend on 𝑦. To show that the 
expected utility for the defender also only depends on 𝑦, simply notice that the defender’s expected utility also only depends on the 
actual coverage probability of each target (Equation (2)). □

Corollary 1. It is without loss of generality to only consider a pure strategy for the informant, i.e., the informant reports one message 
deterministically.

Proof. Immediate from Lemma 1. □
5

4 Throughout the paper, we assume max𝑚′ {𝑈𝑖(𝑡, 𝑚′; 𝜃)} always exists even if |𝑀| =∞. Otherwise, there can be no equilibrium.
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According to Lemma 1, in the original game, the defender’s expected utility may depend on how the attacker breaks ties. In the 
same spirit of the strong Stackelberg equilibrium, we consider the following solution concept:

Definition 3 (Strong Stackelberg-perfect Bayesian equilibrium (SS-PBE)). A strategy profile (𝑑, 𝑦, 𝑚) is a Strong Stackelberg-perfect 
Bayesian equilibrium if:

1. (𝑦, 𝑚) is a perfect Bayesian equilibrium:

𝑦 = argmax
𝑦′

∑
𝜃∈Θ

𝑝(𝜃)
∑
𝑡∈𝑇

𝑦(𝑡)
{
(1 − 𝑝𝑤)[𝑥0𝑡 𝑃

𝑎
𝑡
+ (1 − 𝑥0

𝑡
)𝑅𝑎

𝑡
]+

𝑝𝑤[𝑥𝑡(𝑚)𝑃 𝑎
𝑡
+ (1 − 𝑥𝑡(𝑚))𝑅𝑎

𝑡
]
}

𝑚(𝑡;𝜃) = argmax
𝑚′

𝑈𝑖(𝑡,𝑚′;𝜃), ∀𝑡, 𝜃;

2. the attacker breaks ties in favor of the defender;

3. based on the above two conditions, 𝑥 maximizes the defender’s expected utility:

𝑥 = argmax
𝑥′

∑
𝜃∈Θ

𝑝(𝜃)
∑
𝑡∈𝑇

𝑦(𝑡)
{
(1 − 𝑝𝑤)[𝑥0𝑡 𝑅

𝑑
𝑡
+ (1 − 𝑥0

𝑡
)𝑃 𝑑

𝑡
] +

𝑝𝑤[𝑥𝑡(𝑚)𝑅𝑑
𝑡
+ (1 − 𝑥𝑡(𝑚))𝑃 𝑑

𝑡
]
}
.

Lemma 2. It is without loss of generality to assume that the informant always reports a message in 𝑀 after observing any attack target. In 
addition, there always exists an SS-PBE where the following property holds:

min
𝑚∈𝑀

𝑥𝑡(𝑚) = 𝑥0
𝑡
= 𝑥𝑡(⟂) ≤ max

𝑚∈𝑀
𝑥𝑡(𝑚),∀𝑡.

Proof. Let (𝑑, 𝑦, 𝑚) be any SS-PBE. By definition, we have 𝑥0
𝑡
= 𝑥𝑡(⟂). Thus, min𝑚∈𝑀 𝑥𝑡(𝑚) ≤ 𝑥0

𝑡
≤ max𝑚∈𝑀 𝑥𝑡(𝑚). So it remains to 

show min𝑚∈𝑀 𝑥𝑡(𝑚) = 𝑥0
𝑡
. Assume, on the contrary, that 𝑥0

𝑡
< min𝑚∈𝑀 𝑥𝑡(𝑚) for some 𝑡. Then we can modify 𝑥 by adding a new 

message 𝑚′ to 𝑀 with

𝑥𝑡(𝑚′) = 𝑥0
𝑡
,

min
𝑚∈𝑀

𝑥𝑡′ (𝑚) ≤ 𝑥𝑡′ (𝑚′) ≤ max
𝑚∈𝑀

𝑥𝑡′ (𝑚),∀𝑡′ ≠ 𝑡.

Clearly, (𝑑, 𝑦, 𝑚) is still an SS-PBE. And according to Equation (5) and Lemma 1, it would still be an SS-PBE if we slightly modify 
𝑚 so that the informant always breaks ties to favor reporting a message in 𝑀 . For example, we can set 𝑚𝑡(𝜃) = 𝑚′ for all 𝜃 with 
𝑈𝑐
𝑡
(𝜃) < 𝑈𝑢

𝑡
(𝜃). We can repeat the above process until the condition in the lemma is satisfied. During the process, all three players’ 

utilities remain the same, and in the final SS-PBE, the informant always reports a message in 𝑀 after observing any attack target. □

3.2. The optimal defense plan

Once the attacker has chosen a target 𝑡 to attack according to the distribution 𝑦 ∈ Δ(𝑇 ), the expected utilities for both the attacker 
and the defender only depend on the defender’s actual coverage probability 𝑥𝑡 of target 𝑡, which, in turn, depends on the informant’s 
reported message 𝑚. In general, the concrete meaning of the message is irrelevant as long as both the informant and the defender 
interpret it as the same patrol strategy 𝑥(𝑚). However, to help later analysis, we start with the case where 𝑀̄ = 𝑇 ×Θ and consider 
the following direct defense plan, analogous to the direct or revelation mechanism in the mechanism design literature.

Definition 4 (Direct defense plan). A direct defense plan is a tuple (𝑀̄, 𝑥̄, 𝑥̄0) where 𝑀̄ = 𝑇 ×Θ.

Definition 5 (Incentive compatibility). A direct defense plan is incentive compatible, or truthful, if the informant’s best strategy is to 
report the actual target of the attacker and their true type, i.e., (𝑡, 𝜃) = 𝑚(𝑡; 𝜃) ∈ 𝑀̄, ∀𝑡 ∈ 𝑇 , ∀𝜃 ∈Θ.

Now we consider a variant of the well-known revelation principle [21] that fits in our setting. We provide a brief proof for 
completeness.

Theorem 1 (Revelation principle [21]). For any defense plan (𝑀, 𝑥, 𝑥0), there exists a truthful direct defense plan (𝑀̄, 𝑥̄, 𝑥̄0), such that for 
any target 𝑡 chosen by the attacker, and any informant type 𝜃, all the 3 players obtain the same expected utilities as in the original defense 
plan.
6

The intuition behind the revelation principle is to let the mechanism “lie” for the informant (See Fig. 2).
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Fig. 2. Framework of the revelation principle.

Proof. Let 𝑚 =𝑚(𝑡; 𝜃) be the informant’s strategy in the original defense plan. Then the defender uses the patrol strategy 𝑥(𝑚(𝑡; 𝜃)). 
Let 𝑥̄0 = 𝑥0 and define 𝑥̄(𝑡, 𝜃) = 𝑥(𝑚(𝑡; 𝜃)), ∀𝑡, ∀𝜃. It is easy to see that the direct plan (𝑀̄, 𝑥̄, 𝑥̄0) is truthful. Otherwise, assume that 
reporting a different (𝑡′, 𝜃′) leads to a strictly higher informant’s utility, i.e.,

(1 − 𝑝𝑤)[𝑥0𝑡 𝑈
𝑐
𝑡
+ (1 − 𝑥0

𝑡
)𝑈𝑢

𝑡
] + 𝑝𝑤[𝑥̄𝑡(𝑡′, 𝜃′)𝑈𝑐

𝑡
(𝜃) + (1 − 𝑥̄𝑡(𝑡′, 𝜃′))𝑈𝑢

𝑡
(𝜃)]

>(1 − 𝑝𝑤)[𝑥0𝑡 𝑈
𝑐
𝑡
+ (1 − 𝑥0

𝑡
)𝑈𝑢

𝑡
] + 𝑝𝑤[𝑥̄𝑡(𝑡, 𝜃)𝑈𝑐

𝑡
(𝜃) + (1 − 𝑥̄𝑡(𝑡, 𝜃))𝑈𝑢

𝑡
(𝜃)].

This means that in the original defense plan, we have:

(1 − 𝑝𝑤)[𝑥0𝑡 𝑈
𝑐
𝑡
+ (1 − 𝑥0

𝑡
)𝑈𝑢

𝑡
] + 𝑝𝑤{𝑥𝑡(𝑚(𝑡′;𝜃′))𝑈𝑐

𝑡
(𝜃) + [1 − 𝑥𝑡(𝑚(𝑡′;𝜃′))]𝑈𝑢

𝑡
(𝜃)}

>(1 − 𝑝𝑤)[𝑥0𝑡 𝑈
𝑐
𝑡
+ (1 − 𝑥0

𝑡
)𝑈𝑢

𝑡
] + 𝑝𝑤{𝑥𝑡(𝑚(𝑡;𝜃))𝑈𝑐

𝑡
(𝜃) + [1 − 𝑥𝑡(𝑚(𝑡;𝜃))]𝑈𝑢

𝑡
(𝜃)},

which implies that 𝑚(𝑡′, 𝜃′) is a better strategy for the informant, contradicting Equation (4).

Now we show that all three players have the same expected utility under the new direct defense plan. According to Equation 
(1), (2) and (3), for any target 𝑡 and informant type 𝜃, all three players’ utilities in the game only depend on the actual coverage 
probability 𝑥𝑡(𝑚) for the target. For any 𝑡 and 𝜃, the informant will report 𝑚(𝑡; 𝜃) and (𝑡, 𝜃) in both the two plan, resulting in coverage 
probabilities 𝑥𝑡(𝑚(𝑡; 𝜃)) and 𝑥̄𝑡(𝑡, 𝜃). And we have 𝑥̄(𝑡, 𝜃) = 𝑥(𝑚(𝑡; 𝜃)) by definition. □

According to Theorem 1, it is without loss of generality to focus on truthful direct plans. We remark that this is only for ease of 
analysis, while in actual deployment, it may be more appropriate to still use the original format of defense plans, which does not 
consider the truthful direct defense plans but considers a simplified message set.

Although focusing on truthful direct defense plans simplifies our analysis, it is still challenging to compute the optimal plan for 
the defender. For each message 𝑚, we need to specify a patrol strategy, which contains 𝑛 = |𝑇 | variables. And we have 𝑛|Θ| possible 
messages, which means we need to determine 𝑛2|Θ| different variables. This could lead to a heavy computational burden if |Θ| is 
very large.

However, we claim that it is possible to achieve the optimal defender’s utility with only 𝑛 +1 messages (no longer a direct defense 
plan of course), even though the number of different informant types cannot be controlled by the defender.

We view the game from the defender’s perspective and define the partial outcome of the game to be the parameterized mapping 
𝑧 ∶ 𝑇 × Θ ↦ [0, 1], that maps a target to its coverage probability, parameterized by the informant’s type 𝜃, or equivalently 𝑧(𝑡, 𝜃) =
𝑥𝑡(𝑚(𝑡; 𝜃)).

The following lemma is useful for proving the above claim.

Lemma 3. Given any message set 𝑀 and any defender strategy 𝑥(𝑚), there are at most 2𝑛 different outcomes, or equivalently, we only need 
to consider at most 2𝑛 different informant types, since the outcome is parameterized by it.

Proof. For each 𝑡 and each 𝜃, the partial outcome 𝑧(𝑡, 𝜃) = 𝑥𝑡(𝑚) depends on the message 𝑚(𝑡; 𝜃), which in turn only depends on 
whether 𝑈𝑐

𝑡
(𝜃) is greater than 𝑈𝑢

𝑡
(𝜃) or not. The reason is that any two types 𝜃 and 𝜃′ that have the same property (e.g., 𝑈𝑐

𝑡
(𝜃) ≥𝑈𝑢

𝑡
(𝜃)

and 𝑈𝑐
𝑡
(𝜃′) ≥𝑈𝑢

𝑡
(𝜃′)) would favor the same outcome and report the same message. So for each target 𝑡, there are at most 2 different 

𝑥𝑡 ’s. And there can be at most 2𝑛 different partial outcomes. □

Now we are ready to show that |𝑀| = 𝑛 + 1 is sufficient to achieve the optimal defender’s utility.

Theorem 2. There exists a defender strategy 𝑑 = (𝑀, 𝑥, 𝑥0), with |𝑀| = 𝑛 + 1, that achieves the optimal defender’s utility.

Proof. Let 𝑑 = (𝑀̂, 𝑥̂, 𝑥̂0) be an optimal truthful direct defense plan. We will construct a new defense plan based on 𝑑. To ensure 
truthfulness, 𝑥̂ must satisfy:

𝑥̂𝑡(𝑡, 𝜃) ≥ 𝑥̂𝑡(𝑡, 𝜃′),∀𝜃′,∀𝜃 with 𝑈𝑐
𝑡
(𝜃) >𝑈𝑢

𝑡
(𝜃),

𝑥̂𝑡(𝑡, 𝜃) ≤ 𝑥̂𝑡(𝑡, 𝜃′),∀𝜃′,∀𝜃 with 𝑈𝑐
𝑡
(𝜃) <𝑈𝑢

𝑡
(𝜃).

Therefore, if two different types 𝜃 and 𝜃′ both satisfy 𝑈𝑐
𝑡
(𝜃) > 𝑈𝑢

𝑡
(𝜃) and 𝑈𝑐

𝑡
(𝜃′) > 𝑈𝑢

𝑡
(𝜃′), then we must have 𝑥̂𝑡(𝑡, 𝜃) = 𝑥̂𝑡(𝑡, 𝜃′). The 
7

coverage probabilities of other targets are irrelevant as long as they guarantee truthfulness.
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We construct the new defense plan 𝑑 = (𝑀, 𝑥, 𝑥0) as follows: first set 𝑥0 = 𝑥̂0. Then for each 𝑡, let 𝜃+(𝑡) be any informant type 
with 𝑈𝑐

𝑡
(𝜃+(𝑡)) > 𝑈𝑢

𝑡
(𝜃+(𝑡)). We add a message 𝑚(𝑡) = (𝑡, 𝜃+(𝑡)) for each 𝑡 to 𝑀 , and set 𝑥(𝑚(𝑡)) = 𝑥̂(𝑡, 𝜃+(𝑡)). In the end, we add ⟂ to 

𝑀 and set 𝑥𝑡(⟂) = 𝑥0
𝑡
, ∀𝑡. Note that for any 𝑡, 𝑥0

𝑡
= 𝑥̂0

𝑡
= 𝑥̂𝑡(⟂) =min

𝑚∈𝑀̂{𝑥̂𝑡(𝑚)}, we have that 𝑥𝑡(⟂) =min
𝑚∈𝑀̂{𝑥̂𝑡(𝑚)}, ∀𝑡.

With the above construction, we have |𝑀| = 𝑛 + 1. It is easy to check that 
∑

𝑡 𝑥𝑡(𝑚) ≤ 𝑟, ∀𝑚 ∈𝑀 . Now we show that this new 
defense plan has the same expected utility for the defender as in 𝑑 . For any target 𝑡, and any informant type 𝜃, the informant 
will either choose to report 𝑚(𝑡) or ⟂. For example, if 𝜃 satisfies 𝑈𝑐

𝑡
(𝜃) > 𝑈𝑢

𝑡
(𝜃), then 𝑥𝑡(𝑚(𝑡)) = 𝑥̂𝑡(𝑡, 𝜃+(𝑡)) = max𝜃′ {𝑥̂𝑡(𝑡, 𝜃′)} ≥

max𝑚′ {𝑥𝑡(𝑚′)}. We also have 𝑥̂𝑡(𝑡, 𝜃+(𝑡)) ≥ 𝑥0
𝑡

as 𝑑 is truthful. This implies 𝑥𝑡(𝑚(𝑡)) ≥ 𝑥0
𝑡
, i.e., under the new defense plan 𝑑, this 

informant will report 𝑚(𝑡) instead of staying silent. If 𝑈𝑐
𝑡
(𝜃) < 𝑈𝑢

𝑡
(𝜃), it is clear that 𝑥𝑡(⟂) =min

𝑚∈𝑀̂ 𝑥̂𝑡(𝑚) =min𝑚∈𝑀 𝑥𝑡(𝑚). Similar to 
our argument above for the case of 𝑈𝑐

𝑡
(𝜃) > 𝑈𝑢

𝑡
(𝜃), the informant with 𝑈𝑐

𝑡
(𝜃) < 𝑈𝑢

𝑡
(𝜃) will report ⟂ rather than nothing. This means 

that in defense plan 𝑑, no matter which target 𝑡 the attacker chooses to attack, the informant will always choose a message that 
gives exactly the same expected defender (and also attacker and informant) utility as in 𝑑 . Taking expectation over 𝑡 completes the 
proof. □

The intuition behind Theorem 2 is that the informant utility’s dependence on the type ultimately represents the preference for 
a higher or lower coverage probability. Therefore, it suffices to let the informant ask to either increase or decrease the coverage 
probability. Note that decreasing the coverage probability on any target always leads to a feasible patrol strategy as it never uses 
more defensive resources.

Definition 6 (Defender-aligned and attacker-aligned informant types). An informant type 𝜃 is said to be defender-aligned if 𝑈𝑐
𝑡
(𝜃) >

𝑈𝑢
𝑡
(𝜃), ∀𝑡, and attacker-aligned if 𝑈𝑐

𝑡
(𝜃) <𝑈𝑢

𝑡
(𝜃), ∀𝑡.

Lemma 4. If all informant types are attacker-aligned, there exists an optimal defense plan where the defender always uses the routine patrol 
strategy 𝑥0, i.e., sets 𝑀 = ∅.

Proof. For any defense plan 𝑑 = (𝑀, 𝑥, 𝑥0), the expected defender’s utility is:

𝑈𝑑 =
∑
𝜃

𝑝(𝜃)
∑
𝑡

𝑦(𝑡)
{
(1 − 𝑝𝑤)

[
𝑥0
𝑡
𝑅𝑑
𝑡
+ (1 − 𝑥0

𝑡
)𝑃 𝑑

𝑡

]
+ 𝑝𝑤

[
𝑥𝑡(𝑚(𝑡;𝜃))𝑅𝑑

𝑡
+ (1 − 𝑥𝑡(𝑚(𝑡;𝜃)))𝑃 𝑑

𝑡

]}
.

Since all informant types are attacker-aligned, we have 𝑈𝑐
𝑡
(𝜃) < 𝑈𝑢

𝑡
(𝜃), ∀𝑡, 𝜃, which means:

𝑥𝑡(𝑚(𝑡;𝜃)) = min
𝑚′

𝑥𝑡(𝑚′) ≤ 𝑥0
𝑡
,∀𝑡, 𝜃,

where the inequality is by Lemma 2. Thus,

𝑈𝑑 =
∑
𝜃

𝑝(𝜃)
∑
𝑡

𝑦(𝑡)
{
(1 − 𝑝𝑤)

[
𝑥0
𝑡
𝑅𝑑
𝑡
+ (1 − 𝑥0

𝑡
)𝑃 𝑑

𝑡

]
+

𝑝𝑤
[
𝑥𝑡(𝑚(𝑡;𝜃))(𝑅𝑑

𝑡
− 𝑃 𝑑

𝑡
) + 𝑃 𝑑

𝑡

]}
≤
∑
𝜃

𝑝(𝜃)
∑
𝑡

𝑦(𝑡)
{
(1 − 𝑝𝑤)

[
𝑥0
𝑡
(𝑅𝑑

𝑡
− 𝑃 𝑑

𝑡
) + 𝑃 𝑑

𝑡

]
+

𝑝𝑤
[
𝑥0
𝑡
(𝑅𝑑

𝑡
− 𝑃 𝑑

𝑡
) + 𝑃 𝑑

𝑡

]}
=
∑
𝑡

𝑦(𝑡)[𝑥0
𝑡
𝑈𝑐
𝑡
+ (1 − 𝑥0

𝑡
)𝑈𝑢

𝑡
],

where the inequality is because 𝑅𝑑
𝑡
> 𝑃 𝑑

𝑡
, and the last term is the defender’s expected utility of always using 𝑥0

𝑡
. Since the above 

analysis is true for any defense plan, it also holds for any optimal defense plan 𝑑 = (𝑀̂, 𝑥̂, 𝑥̂0). Thus always using 𝑥̂0 gives a weakly 
better utility, which implies that 𝑥̂0 alone is also optimal. □

Example 1 (Effect of different informants). Suppose there are two targets and the defender has 𝑟 = 1 resource. Consider the following 
symmetric, zero-sum instance:

1 2

1 𝑙,−𝑙 −𝑙, 𝑙
2 −𝑙, 𝑙 𝑙,−𝑙

The defender and the attacker are the row player and the column player, respectively. Clearly, when there is no informant, the 
defender will just use a strategy (0.5, 0.5), which gives both the defender and the attacker a utility of 0. If there is a defender-aligned 
informant with 𝑝𝑤 = 1, then in the optimal defense plan, the defender will always listen to the informant and allocate the 1 unit of 
defensive resource accordingly, which gives a utility of 𝑙. And if there is an attacker-aligned informant, according to Lemma 4, the 
optimal defense strategy is still to use (0.5, 0.5), leading to a 0 utility. However, if the defender does not know that the informant is 
8

attacker-aligned but still listens to him, then the defender will end up with −𝑙 utility.
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Table 2

Additional notations for the security game with multiple informants.

𝑜 ∈ {0,1}𝑘 Each element indicates whether the corresponding informant

observes the attacker or not

𝑝+(𝑠;𝑘, 𝑡) Probability that 𝑠 out of 𝑘 informants reported a message 𝑡

We now consider how to compute an optimal defense plan. When deciding the attack strategy to optimize Equation (1), the 
attacker cannot observe the informant’s type. Thus similar to the standard Stackelberg setting, the optimal attacker strategy can be 
achieved with a pure strategy, i.e., attacking a certain target with probability 1. We break ties in favor of the defender when attacking 
multiple targets gives the attacker the same expected utility.

With Theorem 2, we can index the 𝑛 +1 messages such that 𝑚𝑡 =𝑚(𝑡), and 𝑚𝑛+1 =⟂. To ensure that the informant always chooses 
𝑚𝑡 or 𝑚𝑛+1 when 𝑡 is the target, we need to guarantee that 𝑥𝑡(𝑚𝑡) ≥ 𝑥𝑡(𝑚′) ≥ 𝑥𝑡(𝑚𝑛+1), ∀𝑚′ ∈𝑀 .

To compute an optimal defense plan, we follow the approach of Conitzer and Sandholm [11] and solve a linear program (Program 
(6)) for each target 𝑡. After obtaining all the solutions to the programs, we choose the one that gives the defender the highest utility.

maximize: ∑
𝜃

𝑝(𝜃)
{
(1 − 𝑝𝑤)

[
𝑥0
𝑡
𝑅𝑑
𝑡
+ (1 − 𝑥0

𝑡
)𝑃 𝑑

𝑡

]
+

𝑝𝑤
[
𝑥𝑡(𝑚(𝑡;𝜃))𝑅𝑑

𝑡
+ (1 − 𝑥𝑡(𝑚(𝑡;𝜃)))𝑃 𝑑

𝑡

]}
subject to: ∑

𝜃

𝑝(𝜃)
{
(1 − 𝑝𝑤)

[
𝑥0
𝑡
𝑃 𝑎
𝑡
+ (1 − 𝑥0

𝑡
)𝑅𝑎

𝑡

]
+

𝑝𝑤
[
𝑥𝑡(𝑚(𝑡;𝜃))𝑃 𝑎

𝑡
+ (1 − 𝑥𝑡(𝑚(𝑡;𝜃)))𝑅𝑎

𝑡

]}
≥

∑
𝜃

𝑝(𝜃)
{
(1 − 𝑝𝑤)

[
𝑥0
𝑡′
𝑃 𝑎

𝑡′
+ (1 − 𝑥0

𝑡′
)𝑅𝑎

𝑡′
]
+

𝑝𝑤
[
𝑥𝑡′ (𝑚(𝑡′;𝜃))𝑃 𝑎

𝑡′
+ (1 − 𝑥𝑡′ (𝑚(𝑡′;𝜃)))𝑅𝑎

𝑡′
]}

∀𝑡′ ∈ 𝑇

𝑥𝑡′ (𝑚𝑛+1) ≤ 𝑥𝑡′ (𝑚′) ∀𝑚′ ∈𝑀,𝑡′ ∈ 𝑇

𝑥𝑡′ (𝑚𝑛+1) ≤ 𝑥0
𝑡′

∀𝑡′ ∈ 𝑇

𝑥𝑡′ (𝑚𝑡′ ) ≥ 𝑥𝑡′ (𝑚′) ∀𝑚′ ∈𝑀,𝑡′ ∈ 𝑇

𝑥𝑡′ (𝑚𝑡′ ) ≥ 𝑥0
𝑡′

∀𝑡′ ∈ 𝑇∑
𝑡′

𝑥0
𝑡′
≤ 𝑟

0 ≤ 𝑥0
𝑡′
≤ 1 ∀𝑡′ ∈ 𝑇∑

𝑡′
𝑥𝑡′ (𝑚) ≤ 𝑟 ∀𝑚 ∈𝑀

0 ≤ 𝑥𝑡′ (𝑚) ≤ 1 ∀𝑚 ∈𝑀,𝑡′ ∈ 𝑇

(6)

Theorem 3. The optimal defense plan can be computed by solving LP (6) for all 𝑡 and then choosing the best solution among them with the 
highest defender utility.

Proof. The first constraint of Program (6) ensures that choosing target 𝑡 is the best strategy for the attacker. The second to the fifth 
constraint ensures that the informant always reports 𝑚𝑡 or 𝑚𝑛+1, i.e., 𝑚(𝑡; 𝜃) is either 𝑚𝑡 or 𝑚𝑛+1. Also, the informant’s strategy 𝑚(𝑡; 𝜃)
only depends on the informant type 𝜃 given any target 𝑡 and thus can be pre-computed based on 𝑈𝑐

𝑡
(𝜃) and 𝑈𝑢

𝑡
(𝜃). The remaining 

constraints are feasibility constraints that ensure 𝑥𝑡 is always a probability, and that the total number of used resources does not 
exceed the total number of available resources. □

4. The multiple informants case

Now we consider the more challenging case with multiple informants, i.e., 𝑘 > 1. In reality, it is possible that more than one 
informant report messages to the defender. And to make matters worse, these messages may even disagree with one another. 
Therefore, in this case, we need to consider the game among multiple informants. We first introduce additional notations to denote 
9

a security game with multiple strategic informants, listed in Table 2.
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The game procedure is similar to the single informant case. The only difference is that after the attacker chooses a target to attack, 
all the informants are playing a Bayesian game among themselves. In this case, we need to slightly modify the definition of incentive 
compatibility.

Definition 7 (Incentive compatibility). A direct defense plan is incentive compatible if, in the game among the informants, it constitutes 
a Bayesian Nash equilibrium when all informants observing the attacker’s target report truthfully.

Similar to Theorem 1, we can prove that the revelation principle still holds in this case. The following lemma shows that to 
achieve the optimal utility, the defender needs only 2𝑛 messages.

Lemma 5. There exists an optimal defense plan with |𝑀| = 2𝑛 + 1.

Let 𝜃𝑖 be the type of informant 𝑖. We abuse notation and denote the type profile of all informants by 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑘). Following 
game theoretic conventions, we use 𝜃−𝑖 to denote the type profile of all informants except 𝑖. We still use 𝑑 = (𝑀, 𝑥, 𝑥0) to denote 
a defense plan, where 𝑥0 is still the routine patrol strategy when no message is reported to the defender, and 𝑥 maps the reported 
messages to an informed strategy. Note that the routine patrol strategy 𝑥0 = 𝑥(⟂, ⟂, … , ⟂). For ease of presentation, we only consider 
𝑥 and ignore 𝑥0 from now on. Let 𝑜 ∈ {0, 1}𝑘 be a binary vector with each element indicating whether an informant observes the 
attacker. Let Θ+(𝑡) and Θ−(𝑡) be the sets of informant types 𝜃 with 𝑈𝑐

𝑡
(𝜃) > 𝑈𝑢

𝑡
(𝜃) and 𝑈𝑐

𝑡
(𝜃) <𝑈𝑢

𝑡
(𝜃), respectively.

Proof. According to the revelation principle, we can without loss of generality consider only truthful direct defense plans. Therefore, 
we have:

𝐄
𝑜−𝑖 ,𝜃−𝑖

[
𝑥𝑡(𝑚−𝑖,𝑚𝑖)

]
≥ 𝐄

𝑜−𝑖 ,𝜃−𝑖

[
𝑥𝑡(𝑚−𝑖,𝑚

′
𝑖
)
]
,∀𝑚𝑖 ∈ 𝑡 ×Θ+(𝑡),𝑚′

𝑖
∈ 𝑇 ×Θ, (7)

𝐄
𝑜−𝑖 ,𝜃−𝑖

[
𝑥𝑡(𝑚−𝑖,𝑚𝑖)

]
≥ 𝐄

𝑜−𝑖 ,𝜃−𝑖

[
𝑥𝑡(𝑚−𝑖,⟂)

]
,∀𝑚𝑖 ∈ 𝑡 ×Θ+(𝑡), (8)

𝐄
𝑜−𝑖 ,𝜃−𝑖

[
𝑥𝑡(𝑚−𝑖,𝑚𝑖)

]
≤ 𝐄

𝑜−𝑖 ,𝜃−𝑖

[
𝑥𝑡(𝑚−𝑖,𝑚

′
𝑖
)
]
,∀𝑚𝑖 ∈ 𝑡 ×Θ−(𝑡),𝑚′

𝑖
∈ 𝑇 ×Θ, (9)

𝐄
𝑜−𝑖 ,𝜃−𝑖

[
𝑥𝑡(𝑚−𝑖,𝑚𝑖)

]
≤ 𝐄

𝑜−𝑖 ,𝜃−𝑖

[
𝑥𝑡(𝑚−𝑖,⟂)

]
,∀𝑚𝑖 ∈ 𝑡 ×Θ−(𝑡). (10)

Specifically,

𝐄
𝑜−𝑖 ,𝜃−𝑖

[
𝑥𝑡(𝑚−𝑖, (𝜃𝑖, 𝑡))

]
≥ 𝐄

𝑜−𝑖 ,𝜃−𝑖

[
𝑥𝑡(𝑚−𝑖, (𝜃′𝑖 , 𝑡))

]
,∀𝜃𝑖, 𝜃′𝑖 ∈Θ+(𝑡),

𝐄
𝑜−𝑖 ,𝜃−𝑖

[
𝑥𝑡(𝑚−𝑖, (𝜃𝑖, 𝑡))

]
≤ 𝐄

𝑜−𝑖 ,𝜃−𝑖

[
𝑥𝑡(𝑚−𝑖, (𝜃′𝑖 , 𝑡))

]
,∀𝜃𝑖, 𝜃′𝑖 ∈Θ−(𝑡).

These imply:

𝐄
𝑜−𝑖 ,𝜃−𝑖

[
𝑥𝑡(𝑚−𝑖, (𝜃𝑖, 𝑡))

]
= 𝐄

𝑜−𝑖 ,𝜃−𝑖

[
𝑥𝑡(𝑚−𝑖, (𝜃′𝑖 , 𝑡))

]
,∀𝜃𝑖, 𝜃′𝑖 ∈Θ+(𝑡),

𝐄
𝑜−𝑖 ,𝜃−𝑖

[
𝑥𝑡(𝑚−𝑖, (𝜃𝑖, 𝑡))

]
= 𝐄

𝑜−𝑖 ,𝜃−𝑖

[
𝑥𝑡(𝑚−𝑖, (𝜃′𝑖 , 𝑡))

]
,∀𝜃𝑖, 𝜃′𝑖 ∈Θ−(𝑡).

The above equations do not necessarily mean that 𝑥𝑡(𝑚−𝑖, (𝜃𝑖, 𝑡)) = 𝑥𝑡(𝑚−𝑖, (𝜃′𝑖 , 𝑡)) for any 𝑚−𝑖, if 𝜃𝑖 and 𝜃′
𝑖

both belong to Θ+(𝑡) or 
Θ−(𝑡). However, we show that there exists an optimal defense plan where these equations hold.

Define

𝑥̄+
𝑡
(𝑚−𝑖) = 𝐄

𝑜𝑖,𝜃𝑖∈Θ+(𝑡)

[
𝑥𝑡(𝑚−𝑖,𝑚𝑖)

]
,

𝑥̄−
𝑡
(𝑚−𝑖) = 𝐄

𝑜𝑖,𝜃𝑖∈Θ−(𝑡)

[
𝑥𝑡(𝑚−𝑖,𝑚𝑖)

]
,

𝑝+(𝑡) =
∑

𝜃∈Θ+(𝑡)
𝑝(𝜃),

𝑝−(𝑡) =
∑

𝜃∈Θ−(𝑡)
𝑝(𝜃).

Consider the following strategy:

𝑥′
𝑡
(𝑚−𝑖, (𝜃𝑖, 𝑡)) =

{
𝑥̄+
𝑡
(𝑚−𝑖) if 𝜃𝑖 ∈Θ+(𝑡)

𝑥̄−
𝑡
(𝑚−𝑖) if 𝜃𝑖 ∈Θ−(𝑡)

.

Clearly, switching from 𝑥𝑡 to 𝑥′
𝑡

does not affect informant 𝑖’s behavior, as Equations (7) to (10) still hold. As for the resource 
10

constraint, we have:
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𝑡

𝑥𝑡(𝑚) ≤ 𝑟,∀𝑚.

Taking expectation over 𝑜𝑖, 𝜃𝑖 conditioned on 𝜃𝑖 ∈Θ+(𝑡) yields:∑
𝑡

𝐄
𝑜𝑖,𝜃𝑖∈Θ+(𝑡)

[𝑥𝑡(𝑚−𝑖,𝑚𝑖)] ≤ 𝑟,∀𝑚−𝑖,

which indicates:∑
𝑡

𝑥′
𝑡
(𝑚−𝑖, (𝜃𝑖, 𝑡)) ≤ 𝑟,∀𝑚−𝑖,∀𝜃𝑖 ∈Θ+(𝑡).

Similarly, we also have:∑
𝑡

𝑥′
𝑡
(𝑚−𝑖, (𝜃𝑖, 𝑡)) ≤ 𝑟,∀𝑚−𝑖,∀𝜃𝑖 ∈Θ−(𝑡).

As for other agents, the expected utilities of the defender, the attacker, and other informants all depend on the expected coverage 
probability 𝑥𝑡, which, in turn, depends on 𝑚𝑖. And since the type 𝜃𝑖 and the observation indicator 𝑜𝑖 are both independent of those 
of other informants, when computing an agent’s utility, we can first fix 𝑚𝑖, take expectation over 𝑜𝑖, and then take expectation again 
over 𝜃𝑖. This implies that all the terms involving 𝑚𝑖 in the utility function of any agent except informant 𝑖 can be expressed using 
𝑥̄+
𝑡
(𝑚−𝑖) and 𝑥̄−

𝑡
(𝑚−𝑖). Therefore, changing from 𝑥𝑡 to 𝑥′

𝑡
will also not affect other agents’ utilities, hence their behaviors.

The above discussion implies that when designing patrol strategy 𝑥, we only need to care about whether an informant’s type falls 
in Θ+(𝑡) or Θ−(𝑡). Therefore, along with possible targets 𝑇 , 2𝑛 messages plus the dummy message ⟂ suffice to achieve the optimal 
defender utility. □

Lemma 5 indicates that there are at most (2𝑛 +1)𝑘 different message profiles. The 2𝑛 +1 messages used are 𝑀 = 𝑇 × {+, −} ∪ {⟂
}, where the signs “+” and “−” indicate whether the informant wants the defender to increase the coverage probability for the 
corresponding target 𝑡 reported by him. The extra one message ⟂ compared to Lemma 5 is used when the informant does not report 
anything.

Given any target 𝑡, the message profile from 𝑘 informants is determined by the informants’ types 𝜃 and their observations 𝑜, 
denoted as 𝑚(𝑡, 𝜃, 𝑜). Similarly, we denote the message profile from all informants except for informant 𝑖 as 𝑚−𝑖(𝑡, 𝜃−𝑖, 𝑜−𝑖). Thus, 
when the number of total informants 𝑘 is small, we can afford to enumerate strategies for all possible message profiles. To obtain the 
optimal solution, we can still solve a linear program for each target 𝑡 and choose the best defense plan from the solutions.

maximize:

𝐄
𝑜,𝜃

[
𝑥𝑡
(
𝑚(𝑡, 𝜃, 𝑜)

)
𝑅𝑑
𝑡
+ (1 − 𝑥𝑡

(
𝑚(𝑡, 𝜃, 𝑜)

)
)𝑃 𝑑

𝑡

]
subject to:

𝐄
𝑜,𝜃

[
𝑥𝑡
(
𝑚(𝑡, 𝜃, 𝑜)

)
𝑃 𝑎
𝑡
+
(
1 − 𝑥𝑡

(
𝑚(𝑡, 𝜃, 𝑜)

))
𝑅𝑎
𝑡

]
≥ 𝐄

𝑜,𝜃

[
𝑥𝑡′

(
𝑚(𝑡′, 𝜃, 𝑜)

)
𝑃 𝑎

𝑡′
+ (1 − 𝑥𝑡′

(
𝑚(𝑡′, 𝜃, 𝑜)

)
)𝑅𝑑

𝑡′
]
, ∀𝑡′

𝐄
𝑜−𝑖 ,𝜃−𝑖

[
𝑥𝑡(𝑚−𝑖(𝑡, 𝜃−𝑖, 𝑜−𝑖), 𝑡+)

]
≥ 𝐄

𝑜−𝑖 ,𝜃−𝑖

[
𝑥𝑡(𝑚−𝑖(𝑡, 𝜃−𝑖, 𝑜−𝑖),𝑚′

𝑖
)
]
, ∀𝑚′

𝑖

𝐄
𝑜−𝑖 ,𝜃−𝑖

[
𝑥𝑡(𝑚−𝑖(𝑡, 𝜃−𝑖, 𝑜−𝑖), 𝑡−)

]
≤ 𝐄

𝑜−𝑖 ,𝜃−𝑖

[
𝑥𝑡(𝑚−𝑖(𝑡, 𝜃−𝑖, 𝑜−𝑖),𝑚′

𝑖
)
]
, ∀𝑚′

𝑖

𝐄
𝑜−𝑖 ,𝜃−𝑖

[
𝑥𝑡(𝑚−𝑖(𝑡, 𝜃−𝑖, 𝑜−𝑖),⟂)

]
≤ 𝐄

𝑜−𝑖 ,𝜃−𝑖

[
𝑥𝑡(𝑚−𝑖(𝑡, 𝜃−𝑖, 𝑜−𝑖),𝑚′

𝑖
)
]
, ∀𝑚′

𝑖∑
𝑡′

𝑥𝑡′
(
𝑚(𝑡, 𝜃, 𝑜)

)
≤ 𝑟, ∀𝑚,𝜃, 𝑜

0 ≤ 𝑥𝑡′
(
𝑚(𝑡, 𝜃, 𝑜)

)
≤ 1, ∀𝑚, 𝑡′, 𝜃, 𝑜

(11)

where 𝑚−𝑖(𝑡, 𝜃−𝑖, 𝑜−𝑖) represents the other informants’ truthful reports. Specifically, 𝑚−𝑖(𝑡, 𝜃−𝑖, 𝑜−𝑖) ∈
{
𝑡+, 𝑡−

}𝑘−1
, and every informant 

among the 𝑘 − 1 informants reports 𝑡+ if their type falls in Θ+(𝑡), and 𝑡− otherwise.

However, it turns out that for this program, the defender can still benefit from strategic informants’ reports even if they are fully 
attacker-aligned. For example, consider an extreme case where all strategic informants are attacker-aligned and observe the attacker’s 
attack with probability 1. By the incentive compatibility constraint, all the informants will report 𝑡− when they observe that the 
attacker is attacking some target 𝑡. However, these reports still help the defender to learn the actual target since all informants give 
the same report. Therefore, a rational defender would increase the coverage probability for target 𝑡. Naturally, an attacker-aligned 
informant would choose to report a dummy message ⟂ instead of providing any helpful information. Thus, we consider the following 
strategy for the informants:

𝑚𝑖(𝜃𝑖, 𝑡, 𝑜𝑖) =

{
𝑡+ if 𝜃𝑖 ∈Θ+(𝑡) and 𝑜𝑖 = 1

.

11

⟂ otherwise
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Clearly, the messages 𝑡− are never used in this strategy. We can safely discard the superscript and simplify the message set to 
𝑀 = 𝑇 ∪ {⟂}. Therefore, we propose another defense plan with 𝑀 = 𝑇 ∪ {⟂} under which using the above strategy forms an 
equilibrium among the informants. In this case, there are at most (𝑛 + 1)𝑘 different message profiles in total. Similarly, the linear 
program that maximizes the defender’s utility with respect to target 𝑡 can be written as follows.

maximize:

𝐄𝑜,𝜃

[
𝑥𝑡
(
𝑚(𝑡, 𝜃, 𝑜)

)
𝑅𝑑
𝑡
+
(
1 − 𝑥𝑡(𝑚(𝑡, 𝜃, 𝑜))

)
𝑃 𝑑
𝑡

]
subject to:

𝐄𝑜,𝜃

[
𝑥𝑡
(
𝑚(𝑡, 𝜃, 𝑜)

)
𝑃 𝑎
𝑡
+
(
1 − 𝑥𝑡(𝑚(𝑡, 𝜃, 𝑜))

)
𝑅𝑎
𝑡

]
≥ 𝐄𝑜,𝜃

[
𝑥𝑡′

(
𝑚(𝑡′, 𝜃, 𝑜)

)
𝑃 𝑎

𝑡′
+
(
1 − 𝑥𝑡′ (𝑚(𝑡′, 𝜃, 𝑜))

)
𝑅𝑑

𝑡′

]
, ∀𝑡′

𝐄𝑜−𝑖 ,𝜃−𝑖

[
𝑥𝑡
(
𝑚−𝑖(𝑡, 𝜃−𝑖, 𝑜−𝑖), 𝑡+

)]
≥ 𝐄𝑜−𝑖 ,𝜃−𝑖

[
𝑥𝑡
(
𝑚−𝑖(𝑡, 𝜃−𝑖, 𝑜−𝑖),𝑚′

𝑖

)]
, ∀𝑚′

𝑖

𝐄𝑜−𝑖 ,𝜃−𝑖

[
𝑥𝑡(𝑚−𝑖(𝑡, 𝜃−𝑖, 𝑜−𝑖),⟂)

]
≤ 𝐄𝑜−𝑖 ,𝜃−𝑖

[
𝑥𝑡
(
𝑚−𝑖(𝑡, 𝜃−𝑖, 𝑜−𝑖),𝑚′

𝑖

)]
, ∀𝑚′

𝑖∑
𝑡′ 𝑥𝑡′

(
𝑚(𝑡, 𝜃, 𝑜)

)
≤ 𝑟, ∀𝑚,𝜃, 𝑜

0 ≤ 𝑥𝑡′
(
𝑚(𝑡, 𝜃, 𝑜)

)
≤ 1, ∀𝑚, 𝑡′, 𝜃, 𝑜

(12)

Theorem 4. The optimal defense plan with multiple informants can be computed by solving LP (12) for all 𝑡 = 1, ⋯ , 𝑛 and then choosing the 
best solution among them with the highest defender utility.

Proof. The first constraint of Program (12) ensures that choosing target 𝑡 is the best strategy for the attacker. The second to the fifth 
constraint ensures that the informant always reports 𝑡+ or ⟂, i.e., 𝑚(𝑡; 𝜃) is either 𝑡+ or ⟂. The remaining constraints are feasibility 
constraints that ensure 𝑥𝑡 is always a probability, and that the total number of used resources does not exceed the total number of 
available resources. The objective is the defender’s expected utility given the attacker attacking target 𝑡. □

However, the above program does not scale well due to the exponential number of message profiles (i.e., (𝑛 + 1)𝑘). To solve this 
problem, we propose a defense plan based on plurality voting. Let 𝑥∗ be the optimal defense plan obtained by solving Program (12)

for each target 𝑡 ∈ 𝑇 . Denote by 𝑠 the number of informants who report a message 𝑡.

Definition 8 (Naïve plurality voting defense plan). A naïve plurality voting defense plan 𝑥 is defined as follows. If 𝑠 > 2, we apply 
plurality voting to these 𝑠 messages to determine a target 𝑡 (the target reported by most informants), and allocate an entire unit of 
resource to 𝑡. If 𝑠 ≤ 2, the defender uses patrol strategy 𝑥∗.

However, the above defense plan still involves 𝑥∗ which can only be obtained by solving Program (12). What is more, the plurality 
voting defense plan only cares about the number of informants who report 𝑡 instead of which informants report 𝑡. As a result, we can 
ignore the informants’ identity and denote by 𝑚𝑠,𝑡 the message profile representing that exactly 𝑠 informants report message 𝑡 and 
all the others report messages ⟂, and 𝑚𝑠,𝑡

−𝑖 the same message profile excluding the message reported by informant 𝑖.
Let

𝑝+(𝑠;𝑘, 𝑡) =
(
𝑘

𝑠

)[
𝑝+(𝑡)𝑝𝑤

]𝑠 [1 − 𝑝+(𝑡)𝑝𝑤
]𝑘−𝑠

be the probability that 𝑠 out of 𝑘 informants report message 𝑡. Thus, the expected utility of the defender is:

2∑
𝑠=0

𝑝+(𝑠;𝑘, 𝑡)
[
𝑥𝑡(𝑚𝑠,𝑡)𝑅𝑑

𝑡
+ (1 − 𝑥𝑡(𝑚𝑠,𝑡))𝑃 𝑑

𝑡

]
+𝑅𝑑

𝑡

𝑘∑
𝑠=3

𝑝+(𝑠;𝑘, 𝑡).

Recall that 𝑚𝑖(𝑡; 𝜃) represents the strategy of an informant with type 𝜃 when observing target 𝑡. To ensure that the informants report 
message 𝑡 (i.e., 𝑚𝑖(𝑡; 𝜃) = 𝑡) when 𝜃 ∈ Θ+(𝑡), and message ⟂ (𝑚𝑖(𝑡; 𝜃) =⟂) when 𝜃 ∈ Θ−(𝑡), we need to design the patrol strategy 𝑥
such that reporting other messages leads to a weakly lower expected utility. When 𝜃 ∈Θ+(𝑡), the informant benefits from increasing 
the expected coverage probability of target 𝑡. So we need to ensure that for all possible 𝑚′

𝑖
≠ 𝑡:

1∑
𝑠=0

𝑝+(𝑠;𝑘− 1, 𝑡)𝑥𝑡(𝑚
𝑠,𝑡

−𝑖, 𝑡) +
𝑘−1∑
𝑠=2

𝑝+(𝑠;𝑘− 1, 𝑡)

≥

2∑
𝑠=0

𝑝+(𝑠;𝑘− 1, 𝑡)𝑥𝑡(𝑚
𝑠,𝑡

−𝑖,𝑚
′
𝑖
) +

𝑘−1∑
𝑠=3

𝑝+(𝑠;𝑘− 1, 𝑡),

which is equivalent to:

1∑
𝑝+(𝑠;𝑘− 1, 𝑡)𝑥𝑡(𝑚

𝑠,𝑡

−𝑖, 𝑡) + 𝑝+(2;𝑘− 1, 𝑡) ≥
2∑
𝑝+(𝑠;𝑘− 1, 𝑡)𝑥𝑡(𝑚

𝑠,𝑡

−𝑖,𝑚
′
𝑖
). (13)
12

𝑠=0 𝑠=0
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Note that (𝑚𝑠,𝑡

−𝑖, 𝑡) = 𝑚𝑠+1,𝑡 and that when 𝑚′
𝑖
=⟂, 𝑚′

𝑖
will be ignored by the defender and (𝑚𝑠,𝑡

−𝑖, 𝑚
′
𝑖
) = 𝑚𝑠,𝑡. Similarly, when 𝜃 ∈ Θ−(𝑡), 

we need to ensure:

2∑
𝑠=0

𝑝+(𝑠;𝑘− 1, 𝑡)𝑥𝑡(𝑚𝑠,𝑡) ≤
2∑

𝑠=0
𝑝+(𝑠;𝑘− 1, 𝑡)𝑥𝑡(𝑚

𝑠,𝑡

−𝑖,𝑚
′
𝑖
). (14)

When 𝑚′
𝑖
= 𝑡, we have (𝑚𝑠,𝑡

−𝑖, 𝑚
′
𝑖
) =𝑚𝑠+1,𝑡 and 𝑥𝑡(𝑚3,𝑡) = 1 by Definition 8.

Therefore, we can obtain the defense plan for 𝑠 ≤ 2 by solving Program (15) for each target 𝑡. The second to the fourth constraints 
in Program (15) come from combining Equation (13) and (14).

Definition 9 (Plurality voting defense plan). A plurality voting defense plan 𝑥 is defined to be the solution obtained by solving Program 
(15) for each target 𝑡 and choosing the best one.

maximize:
2∑

𝑠=0
𝑝+(𝑠;𝑘, 𝑡)

[
𝑥𝑡(𝑚𝑠,𝑡)𝑅𝑑

𝑡
+ (1 − 𝑥𝑡(𝑚𝑠,𝑡))𝑃 𝑑

𝑡

]
+𝑅𝑑

𝑡

𝑘∑
𝑠=3

𝑝+(𝑠;𝑘, 𝑡)

subject to:
2∑

𝑠=0
𝑝+(𝑠;𝑘, 𝑡)

[
𝑥𝑡(𝑚𝑠,𝑡)𝑃 𝑎

𝑡
+ (1 − 𝑥𝑡(𝑚𝑠,𝑡))𝑅𝑎

𝑡

]
+ 𝑃 𝑎

𝑡

𝑘∑
𝑠=3

𝑝+(𝑠;𝑘, 𝑡)

≥

2∑
𝑠=0

𝑝+(𝑠;𝑘, 𝑡′)
[
𝑥𝑡′ (𝑚𝑠,𝑡′ )𝑃 𝑎

𝑡′
+ (1 − 𝑥𝑡′ (𝑚𝑠,𝑡′ ))𝑅𝑎

𝑡′

]
+ 𝑃 𝑎

𝑡′

𝑘∑
𝑠=3

𝑝+(𝑠;𝑘, 𝑡′),

∀𝑡′
1∑

𝑠=0
𝑝+(𝑠;𝑘− 1, 𝑡)𝑥𝑡(𝑚𝑠+1,𝑡) + 𝑝+(2;𝑘− 1, 𝑡)

≥

2∑
𝑠=0

𝑝+(𝑠;𝑘− 1, 𝑡)𝑥𝑡(𝑚
𝑠,𝑡

−𝑖,𝑚
′
𝑖
), ∀𝑡,𝑚′

𝑖

1∑
𝑠=0

𝑝+(𝑠;𝑘− 1, 𝑡)𝑥𝑡(𝑚𝑠+1,𝑡) + 𝑝+(2;𝑘− 1, 𝑡) ≥
2∑

𝑠=0
𝑝+(𝑠;𝑘− 1, 𝑡)𝑥𝑡(𝑚𝑠,𝑡), ∀𝑡

2∑
𝑠=0

𝑝+(𝑠;𝑘− 1, 𝑡)𝑥𝑡(𝑚𝑠,𝑡) ≤
2∑

𝑠=0
𝑝+(𝑠;𝑘− 1, 𝑡)𝑥𝑡(𝑚

𝑠,𝑡

−𝑖,𝑚
′
𝑖
), ∀𝑡,𝑚′

𝑖∑
𝑡′

𝑥𝑡′ (𝑚) ≤ 𝑟, ∀𝑚

0 ≤ 𝑥𝑡(𝑚) ≤ 1, ∀𝑡,𝑚

(15)

Program (15) guarantees that under such a defense plan, using strategy 𝑡 =𝑚𝑖(𝑡; 𝜃) when 𝜃 ∈Θ+(𝑡) and ⟂=𝑚𝑖(𝑡; 𝜃) when 𝜃 ∈Θ−(𝑡)
forms a Bayesian Nash equilibrium. Notice that we can no longer use the term “incentive compatibility” here, as the plurality voting 
defense plan is not a direct defense plan. But this property is similar to the incentive compatibility property in the sense that truthfully 
revealing the information required by the defender constitutes a Bayesian Nash equilibrium. Nevertheless, we will abuse notation 
and still use the term “incentive compatibility” to describe such a property.

Theorem 5. The plurality voting defense plan is incentive compatible.

Proof. Immediate from the constraints of Program (15). □

Since the plurality voting defense plan is incentive compatible, one can easily check that when 𝑠 > 2, the defender can always 
correctly identify the target chosen by the attacker. It follows that in this case, the defender always catches the attacker with 
probability 1. However, this may not benefit the defender in the end. The reason is that the attacker may not choose the target that 
gives the defender the highest utility if he knows that he will always be caught with a high probability. In fact, the defender’s utility 
may be arbitrarily worse compared with the optimal one. Consider the following extreme example:

Example 2. Suppose there are 3 informants with observation probability 𝑝𝑤 = 1. All informants are defender-aligned, i.e., 𝑈𝑐
𝑡
(𝜃) >

𝑈𝑢
𝑡
(𝜃), ∀𝑡 and |Θ| = 1. The defender has 1 unit of defense resource. The utilities of the defender and the attacker are listed in Table 

3.

In this example, if the defender adopts the plurality voting defense plan, all the 3 informants will always report the true target. 
And according to the plurality voting defense plan, the attacker will be caught with probability 1. In this case, the attacker will 
choose to attack target 2 since it gives the attacker a higher utility. As a result, the defender gets utility 𝜀.

However, the defender can change the defense plan, and only covers target 1 with a probability of 0.5 when all the 3 informants 
report target 1 to the defender. In this case, the attacker’s expected utility of attacking target 1 is 0.5𝜀, which is now slightly higher 
than that of attacking target 2. Thus the attacker will choose to attack target 1 and the defender’s utility becomes 0.5. The ratio of 
13

the defender’s utility in the two cases is 0.5
𝜀

, which approaches infinity as 𝜀 approaches 0.
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Table 3

The defender and the attacker’s pay-

off matrix. The first (second) number 
in each cell is the defender’s (attack-

er’s) utility.

Target 1 Target 2

cover 1,−1 𝜀,0
uncover 0,1 + 𝜀 −1,1

Example 2 not only shows how the plurality voting defense plan can be arbitrarily worse than the optimal one, but also gives 
us insights on how to improve the plurality voting defense plan: by not being so greedy and lowering the coverage probabilities of 
certain targets. Let us first consider the following strategy.

Let 𝑥∞ be an optimal patrol strategy when there is no informant but the defender has an unlimited number of resources, i.e., 𝑥∞
is obtained by solving the following linear program for each target 𝑡 and then choosing the best solution among them:

maximize: 𝑥𝑡𝑅
𝑑
𝑡
+ (1 − 𝑥𝑡)𝑃 𝑑

𝑡

subject to: 𝑥𝑡𝑃
𝑎
𝑡
+ (1 − 𝑥𝑡)𝑅𝑎

𝑡
≥ 𝑥𝑡′𝑃

𝑎

𝑡′
+ (1 − 𝑥𝑡′ )𝑅𝑑

𝑡′
, ∀𝑡′ ∈ 𝑇

0 ≤ 𝑥𝑡′ ≤ 1, ∀𝑡′
(16)

Denote by 𝑡∞ the target chosen by the attacker when the defender uses 𝑥∞. Define 𝑥̂∞ as follows:

𝑥̂∞
𝑡
=
{
𝑥∞
𝑡

if 𝑡 = 𝑡∞

1 otherwise
.

Compared to 𝑥∞, 𝑥̂∞ increases the coverage probabilities for all targets except 𝑡∞. It is clear that 𝑥̂∞ achieves the same defender 
utility as 𝑥∞, hence also optimal. In this case, the defender’s utility is 𝑥̂∞

𝑡∞𝑅
𝑑
𝑡∞ + (1 − 𝑥̂∞

𝑡∞)𝑃
𝑑
𝑡∞ .

Now we are ready to define the modified plurality voting defense plan based on 𝑥̂∞. The main modification is that the coverage 
probability of the target from plurality voting is not fixed to be 1, but the probability we computed from 𝑥̂∞ .

Definition 10 (Modified plurality voting defense plan). In a modified plurality voting defense plan, if 𝑠 > 2, we use plurality voting 
to determine a target 𝑡, and allocate 𝑥̂∞

𝑡
units of resources to 𝑡. If 𝑠 ≤ 2, we use patrol strategy 𝑥 obtained by solving Program (17)

(which is modified from Program (11) for target 𝑡∞).

maximize ∶
2∑

𝑠=0
𝑝+(𝑠;𝑘, 𝑡)

[
𝑥𝑡(𝑚𝑠,𝑡)𝑅𝑑

𝑡
+
(
1 − 𝑥𝑡(𝑚𝑠,𝑡)

)
𝑃 𝑑
𝑡

]
+

𝑘∑
𝑠=3

𝑝+(𝑠;𝑘, 𝑡)
[
𝑥̂∞
𝑡
𝑅𝑑
𝑡
+
(
1 − 𝑥̂∞

𝑡

)
𝑃 𝑑
𝑡

]
subject to ∶

2∑
𝑠=0

𝑝+(𝑠;𝑘, 𝑡)
[
𝑥𝑡(𝑚𝑠,𝑡)𝑃 𝑎

𝑡
+ (1 − 𝑥𝑡(𝑚𝑠,𝑡))𝑅𝑎

𝑡

]
+

𝑘∑
𝑠=3

𝑝+(𝑠;𝑘, 𝑡)
[
𝑥̂∞
𝑡
𝑃 𝑎
𝑡
+
(
1 − 𝑥̂∞

𝑡

)
𝑅𝑎
𝑡

]
≥

2∑
𝑠=0

𝑝+(𝑠;𝑘, 𝑡′)
[
𝑥𝑡′ (𝑚𝑠,𝑡′ )𝑃 𝑎

𝑡′
+
(
1 − 𝑥𝑡′ (𝑚𝑠,𝑡′ )

)
𝑅𝑎

𝑡′

]
+

𝑘∑
𝑠=3

𝑝+(𝑠;𝑘, 𝑡′)
[
𝑥̂∞
𝑡′ 𝑃

𝑎

𝑡′
+
(
1 − 𝑥̂∞

𝑡′
)
𝑅𝑎

𝑡′
]
, ∀𝑡′

1∑
𝑠=0

𝑝+(𝑠;𝑘− 1, 𝑡)𝑥𝑡(𝑚𝑠+1,𝑡) + 𝑝+(2;𝑘− 1, 𝑡)𝑥̂∞
𝑡

≥

2∑
𝑠=0

𝑝+(𝑠;𝑘− 1, 𝑡)𝑥𝑡(𝑚
𝑠,𝑡

−𝑖,𝑚
′
𝑖
), ∀𝑡,𝑚′

𝑖

1∑
𝑠=0

𝑝+(𝑠;𝑘− 1, 𝑡)𝑥𝑡(𝑚𝑠+1,𝑡) + 𝑝+(2;𝑘− 1, 𝑡)𝑥̂∞
𝑡

≥

2∑
𝑠=0

𝑝+(𝑠;𝑘− 1, 𝑡)𝑥𝑡(𝑚𝑠,𝑡), ∀𝑡

2∑
𝑠=0

𝑝+(𝑠;𝑘− 1, 𝑡)𝑥𝑡(𝑚𝑠,𝑡) ≤
2∑

𝑠=0
𝑝+(𝑠;𝑘− 1, 𝑡)𝑥𝑡(𝑚

𝑠,𝑡

−𝑖,𝑚
′
𝑖
), ∀𝑡,𝑚′

𝑖∑
′
𝑥𝑚
𝑡′
≤ 𝑟, ∀𝑚

(17)
14

𝑡

0 ≤ 𝑥𝑡′ (𝑚) ≤ 𝑥̂∞
𝑡′ , ∀𝑡,𝑚
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Remark 1. Compared to the plurality voting defense plan, the modified version is almost identical except that the number of 
resources allocated to target 𝑡∞ is capped by 𝑥̂∞

𝑡
.

The modified version is still incentive compatible, and the proof is similar to that of Theorem 5. Thus, we omit the proof but only 
state the result here.

Theorem 6. The modified plurality voting defense plan is incentive compatible.

Since both Program (16) and (17) can be solved in polynomial time, it follows that the modified plurality voting defense plan can 
also be found in polynomial time. Furthermore, we can show that such a defense plan is actually optimal.

Theorem 7. Programs (12) and (17) have the same optimal objective value and, moreover, any feasible solution of one program can be 
efficiently converted into a feasible solution of the other program with the same objective value.

Proof. We begin by introducing some additional notations. Define

⟨Θ,𝑂⟩𝑠,𝑘
𝑡

=

{⟨𝜃, 𝑜⟩ ∶ 𝑘∑
𝑖=1
1
(
𝜃𝑖 ∈Θ+(𝑡) and 𝑜𝑖 = 1

)
= 𝑠

}
. (18)

Note that for all 𝑡, we have 
⋃

𝑠=0,⋯,𝑘⟨Θ, 𝑂⟩𝑠,𝑘
𝑡

= Θ × 𝑂 since given any 𝜃 ∈ Θ and 𝑜 ∈ 𝑂, there always exists 𝑠 such that ⟨𝜃, 𝑜⟩ ∈⟨Θ, 𝑂⟩𝑠,𝑘
𝑡

. Similarly, we denote by ⟨Θ, 𝑂⟩𝑠,𝑘−1
𝑡

the set of type and observation pairs from 𝑘 − 1 informants.

By definition, we have∑
⟨𝜃,𝑜⟩∈⟨Θ,𝑂⟩𝑠,𝑘

𝑡

𝑝(𝜃)𝑝(𝑜) =
(
𝑘

𝑠

)[
𝑝+(𝑡)𝑝𝑤

]𝑠 [1 − 𝑝+(𝑡)𝑝𝑤
]𝑘−𝑠

.

The rest of the proof consists of two steps.

Step 1. Denote by 𝑥(𝑚̂𝑠,𝑡) the optimal solution to Program (17). For any message profile 𝑚̂(𝜃, 𝑜, 𝑡), we can easily obtain the 
corresponding message profile 𝑚̂𝑠,𝑡 by ignoring the informants’ identity. Now we construct another defense plan 𝑚̂(𝜃, 𝑜, 𝑡) by setting 
𝑥̂(𝑚̂(𝜃, 𝑜, 𝑡)) = 𝑥(𝑚̂𝑠,𝑡) whenever 

∑𝑘

𝑖=0 1
(
𝜃𝑖 ∈ Θ+(𝑡) and 𝑜𝑖 = 1

)
= 𝑠. Next, we show it is a feasible solution to Program (12) with the 

same objective value.

For the first constraint of Program (12), we have:

𝐄
𝑜,𝜃

[
𝑥̂𝑡(𝑚(𝑡, 𝜃, 𝑜))𝑃 𝑎

𝑡
+ (1 − 𝑥̂𝑡(𝑚(𝑡, 𝜃, 𝑜)))𝑅𝑎

𝑡

]
=
∑
𝜃

∑
𝑜

𝑝(𝜃)𝑝(𝑜)
[
𝑥̂𝑡(𝑚(𝑡, 𝜃, 𝑜))𝑃 𝑎

𝑡
+ (1 − 𝑥̂𝑡(𝑚(𝑡, 𝜃, 𝑜)))𝑅𝑎

𝑡

]
=

𝑘∑
𝑠=0

∑
⟨𝜃,𝑜⟩∈⟨Θ,𝑂⟩𝑠,𝑘

𝑡

𝑝(𝜃)𝑝(𝑜)
[
𝑥̂𝑡(𝑚(𝑡, 𝜃, 𝑜))𝑃 𝑎

𝑡
+ (1 − 𝑥̂𝑡(𝑚(𝑡, 𝜃, 𝑜)))𝑅𝑎

𝑡

]

=
𝑘∑

𝑠=0
𝑝+(𝑠;𝑘, 𝑡)

[
𝑥𝑡(𝑚𝑠,𝑡)𝑃 𝑎

𝑡
+ (1 − 𝑥𝑡(𝑚𝑠,𝑡))𝑅𝑎

𝑡

]
.

Since 𝑥 is an optimal solution to Program (17), 𝑥 must satisfy the first constraint of it. Combining with the above equation shows 
that 𝑥̂ satisfies the first constraint of Program (12).

As for the second and the third constraints of Program (12), we consider 3 cases for each informant 𝑖. When 𝑚𝑖(𝑡, 𝜃𝑖, 𝑜𝑖) = 𝑡, we 
have:

𝐄
𝑜−𝑖 ,𝜃−𝑖

[
𝑥̂𝑡(𝑚−𝑖(𝑡, 𝜃−𝑖, 𝑜−𝑖), 𝑡)

]
=
∑
𝜃−𝑖

∑
𝑜−𝑖

𝑝(𝜃−𝑖)𝑝(𝑜−𝑖)𝑥̂𝑡(𝑚−𝑖(𝑡, 𝜃−𝑖, 𝑜−𝑖), 𝑡)

=
𝑘−1∑
𝑠=0

∑
⟨𝜃−𝑖 ,𝑜−𝑖⟩∈⟨Θ,𝑂⟩𝑠,𝑘−1

𝑡

𝑝(𝜃−𝑖)𝑝(𝑜−𝑖)𝑥̂𝑡(𝑚−𝑖(𝑡, 𝜃−𝑖, 𝑜−𝑖), 𝑡)

=
𝑘−1∑
𝑠=0

𝑝+(𝑠;𝑘− 1, 𝑡)𝑥𝑡(𝑚𝑠+1,𝑡).
15

When 𝑚𝑖(𝑡, 𝜃𝑖, 𝑜𝑖) =⟂, we have
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𝐄
𝑜−𝑖 ,𝜃−𝑖

[
𝑥̂𝑡(𝑚−𝑖(𝑡, 𝜃−𝑖, 𝑜−𝑖),⟂)

]
=

𝑘−1∑
𝑠=0

𝑝+(𝑠;𝑘− 1, 𝑡)𝑥𝑡(𝑚𝑠,𝑡).

And when 𝑚𝑖(𝑡, 𝜃𝑖, 𝑜𝑖) = 𝑡′ ≠ 𝑡, we have

𝐄
𝑜−𝑖 ,𝜃−𝑖

[
𝑥̂𝑡(𝑚−𝑖(𝑡, 𝜃−𝑖, 𝑜−𝑖), 𝑡′)

]
=

𝑘−1∑
𝑠=0

𝑝+(𝑠;𝑘− 1, 𝑡)𝑥𝑡(𝑚𝑠,𝑡, 𝑡′).

As a result, we can conclude that 𝑥̂ satisfies the second and the third constraints of Program (12) since 𝑥 satisfies the corresponding 
constraints in Program (17).

Finally, we can also write the defender’s expected utility as

𝐄
𝑜,𝜃

[
𝑥̂𝑡(𝑚(𝑡, 𝜃, 𝑜))𝑅𝑑

𝑡
+ (1 − 𝑥̂𝑡(𝑚(𝑡, 𝜃, 𝑜)))𝑃 𝑑

𝑡

]
=

𝑘∑
𝑠=0

𝑝+(𝑠;𝑘, 𝑡)
[
𝑥𝑡(𝑚𝑠,𝑡)𝑅𝑑

𝑡
+ (1 − 𝑥𝑡(𝑚𝑠,𝑡))𝑃 𝑑

𝑡

]
,

proving that the new defense plan has the same objective value as in (12).

Step 2. Consider any optimal solution 𝑥(𝑚(𝜃, 𝑜, 𝑡)) to Program (12), we construct a feasible 𝑥̂(𝑚𝑠,𝑡) for Program (17) and show it 
achieves the same objective value. For any 𝑠, let

𝑥̂(𝑚𝑠,𝑡) = 1|||⟨Θ,𝑂⟩𝑠,𝑘
𝑡

|||
∑

⟨𝜃,𝑜⟩∈⟨Θ,𝑂⟩𝑠,𝑘
𝑡

𝑥(𝑚(𝜃, 𝑜, 𝑡)),

𝑥̂(𝑚𝑠,𝑡

−𝑖,𝑚𝑖) =
1|||⟨Θ,𝑂⟩𝑠,𝑘−1
𝑡

|||
∑

⟨𝜃,𝑜⟩∈⟨Θ,𝑂⟩𝑠,𝑘−1
𝑡

𝑥(𝑚−𝑖(𝜃−𝑖, 𝑜−𝑖, 𝑡),𝑚𝑖).

For the attacker, the utility of attacking target 𝑡 is

𝑘∑
𝑠=0

𝑝+(𝑠;𝑘, 𝑡)
[
𝑥̂𝑡(𝑚𝑠,𝑡)𝑃 𝑎

𝑡
+ (1 − 𝑥̂𝑡(𝑚𝑠,𝑡))𝑅𝑎

𝑡

]
=

𝑘∑
𝑠=0

𝑝+(𝑠;𝑘, 𝑡)
[
(𝑃 𝑎

𝑡
−𝑅𝑎

𝑡
)𝑥̂𝑡(𝑚𝑠,𝑡) +𝑅𝑎

𝑡

]
=

𝑘∑
𝑠=0

∑
⟨𝜃,𝑜⟩∈⟨Θ,𝑂⟩𝑠,𝑘

𝑡

𝑝(𝜃)𝑝(𝑜)
⎡⎢⎢⎣(𝑃 𝑎

𝑡
−𝑅𝑎

𝑡
)

∑
𝜃,𝑜∈⟨Θ,𝑂⟩𝑠,𝑘

𝑡

𝑥(𝑚(𝜃, 𝑜, 𝑡))|||⟨Θ,𝑂⟩𝑠,𝑘
𝑡

||| +𝑅𝑎
𝑡

⎤⎥⎥⎦
=

𝑘∑
𝑠=0

∑
⟨𝜃,𝑜⟩∈⟨Θ,𝑂⟩𝑠,𝑘

𝑡

𝑝(𝜃)𝑝(𝑜)[(𝑃 𝑎
𝑡
−𝑅𝑎

𝑡
)𝑥(𝑚(𝜃, 𝑜, 𝑡)) +𝑅𝑎

𝑡
]

= 𝐄
𝑜,𝜃

[
𝑥𝑡
(
𝑚(𝑡, 𝜃, 𝑜)

)
𝑃 𝑎
𝑡
+
(
1 − 𝑥𝑡(𝑚(𝑡, 𝜃, 𝑜))

)
𝑅𝑎
𝑡

]
. (19)

With arguments similar to Step 1, we know that the constructed defense plan 𝑥̂ satisfies the first constraint of Program (17).

For any informant 𝑖 who reports 𝑡,

𝑘−1∑
𝑠=0

𝑝+(𝑠;𝑘− 1, 𝑡)𝑥̂𝑡(𝑚
𝑠,𝑡

−𝑖, 𝑡)

=
𝑘−1∑
𝑠=0

∑
⟨𝜃−𝑖 ,𝑜−𝑖⟩∈⟨Θ,𝑂⟩𝑠,𝑘−1

𝑡

𝑝(𝜃−𝑖)𝑝(𝑜−𝑖)𝑥̂𝑡(𝑚
𝑠,𝑡

−𝑖, 𝑡)

=
𝑘−1∑
𝑠=0

∑
⟨𝜃−𝑖 ,𝑜−𝑖⟩∈⟨Θ,𝑂⟩𝑠,𝑘−1

𝑡

𝑝(𝜃−𝑖)𝑝(𝑜−𝑖)

∑
𝜃,𝑜∈⟨Θ,𝑂⟩𝑠,𝑘−1

𝑡

𝑥(𝑚−𝑖(𝜃−𝑖, 𝑜−𝑖, 𝑡), 𝑡)|||⟨Θ,𝑂⟩𝑠,𝑘−1
𝑡

||| . (20)

For any informant 𝑖 who reports 𝑡′ ≠ 𝑡 or ⟂, we have

𝑘−1∑
𝑠,𝑡 ′
16

𝑠=0
𝑝+(𝑠;𝑘− 1, 𝑡)𝑥̂𝑡(𝑚−𝑖, 𝑡 )
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=
𝑘−1∑
𝑠=0

∑
⟨𝜃−𝑖 ,𝑜−𝑖⟩∈⟨Θ,𝑂⟩𝑠,𝑘−1

𝑡

𝑝(𝜃−𝑖)𝑝(𝑜−𝑖)

∑
𝜃,𝑜∈⟨Θ,𝑂⟩𝑠,𝑘−1

𝑡

𝑥(𝑚−𝑖(𝜃−𝑖, 𝑜−𝑖, 𝑡), 𝑡′)|||⟨Θ,𝑂⟩𝑠,𝑘−1
𝑡

||| . (21)

Since the defense plan 𝑥 is a feasible solution to Program (12), we have

𝑘−1∑
𝑠=0

∑
⟨𝜃−𝑖 ,𝑜−𝑖⟩∈⟨Θ,𝑂⟩𝑠,𝑘−1

𝑡

𝑝(𝜃−𝑖)𝑝(𝑜−𝑖)𝑥(𝑚−𝑖(𝑡, 𝜃−𝑖, 𝑜−𝑖), 𝑡)

≥

𝑘−1∑
𝑠=0

∑
⟨𝜃−𝑖 ,𝑜−𝑖⟩∈⟨Θ,𝑂⟩𝑠,𝑘−1

𝑡

𝑝(𝜃−𝑖)𝑝(𝑜−𝑖)𝑥(𝑚−𝑖(𝑡, 𝜃−𝑖, 𝑜−𝑖), 𝑡′). (22)

Plugging in Equation (20) and (21) yields:

𝑘−1∑
𝑠=0

𝑝+(𝑠;𝑘− 1, 𝑡)𝑥̂𝑡(𝑚
𝑠,𝑡

−𝑖, 𝑡) ≥
𝑘−1∑
𝑠=0

𝑝+(𝑠;𝑘− 1, 𝑡)𝑥̂𝑡(𝑚
𝑠,𝑡

−𝑖, 𝑡
′). (23)

Similarly, we have

𝑘−1∑
𝑠=0

𝑝+(𝑠;𝑘− 1, 𝑡)𝑥̂𝑡(𝑚
𝑠,𝑡

−𝑖, 𝑡
′) ≥

𝑘−1∑
𝑠=0

𝑝+(𝑠;𝑘− 1, 𝑡)𝑥̂𝑡(𝑚
𝑠,𝑡

−𝑖,⟂). (24)

Therefore, the constructed defense plan 𝑥̂ satisfies the second and the third constraints of Program (17), i.e., 𝑥̂ is incentive compatible 
for the strategic informants.

Finally, similar to Equation (19), we have

𝑘∑
𝑠=0

𝑝+(𝑠;𝑘, 𝑡)
[
𝑥̂𝑡(𝑚𝑠,𝑡)𝑅𝑑

𝑡
+ (1 − 𝑥̂𝑡(𝑚𝑠,𝑡))𝑃 𝑑

𝑡

]
=

𝑘∑
𝑠=0

∑
⟨𝜃,𝑜⟩∈⟨Θ,𝑂⟩𝑠,𝑘

𝑡

𝑝(𝜃)𝑝(𝑜)
[
𝑥𝑡(𝑚(𝑡, 𝜃, 𝑜))𝑅𝑑

𝑡
+ (1 − 𝑥𝑡(𝑚(𝑡, 𝜃, 𝑜)))𝑃 𝑑

𝑡

]
=𝐄𝑜,𝜃

[
𝑥𝑡
(
𝑚(𝑡, 𝜃, 𝑜)

)
𝑅𝑑
𝑡
+
(
1 − 𝑥𝑡(𝑚(𝑡, 𝜃, 𝑜))

)
𝑃 𝑑
𝑡

]
, (25)

proving that the defender’s utilities are the same in the two programs. □

The following corollary directly follows from Theorem 4 and Theorem 7.

Corollary 2. The optimal defender defense plan with multiple informants can be computed efficiently in polynomial time.

5. Experiments

All our results shown in this section are demonstrated over randomly generated game instances. The rewards and penalties for 
both the defender and the attacker are drawn from 𝑈 [0, 1] and 𝑈 [−1, 0], respectively. There are 3 different informant types: a 
defender-aligned type (𝜃1), an attacker-aligned type (𝜃2), and a random type (𝜃3). All the informant utilities are randomly drawn 
from 𝑈 [0, 0.2]. In our experiments, we change probabilities for 𝜃1 and 𝜃2 to simulate the process of changing from attacker-aligned 
informants to defender-aligned informants. We solve our linear program with Python using Gurobi 9.5.1 [32] as the solver.5 The 
running time of our algorithm for the single informant case is depicted in Fig. 3. The results shown in this section are averaged over 
100 randomly generated game instances.

Next, Section 5.1 to 5.3 report results on how the informant type changes the equilibrium of the game, while in Section 5.4 and 
5.5, we show the effect of having different numbers of informants.

5.1. Utility vs. informant type

Consider an informant having one of the three types described above. We enumerate all possible type distributions satisfying 
𝑝(𝜃) ∈ {0.1, 0.2, … , 1.0}, ∀𝜃 and 

∑
𝜃 𝑝(𝜃) = 1. We compute the corresponding utilities for both the defender and the attacker to 

analyze the effect of having different types of informants. As shown in Figs. 4, the defender obtains higher utilities and the attacker 
obtains lower utilities as the informant goes from fully attacker-aligned to fully defender-aligned under all different settings of 𝑟 and 
𝑝𝑤, which shows that the existence of the informant could significantly affect the game.
17

5 The code can be found at https://github .com /AIandSocialGoodLab /securitygamewithinformants.

https://github.com/AIandSocialGoodLab/securitygamewithinformants
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Fig. 3. The running time of our algorithm for the single informant case. The running time goes up as the number of targets increases. Even for 500 targets, our 
algorithm can find the optimal solution within 4 minutes.

5.2. Number of resources vs. informant type

We explore how an informant could influence the game in another dimension. We set 𝑝(𝜃3) = 0, and only change 𝑝(𝜃1) and 𝑝(𝜃2). 
The points on the same curve in the Fig. 5 correspond to the same defender’s utility. For example, when there are 5 targets, in order 
to achieve the same utility of having 𝑟 = 1 with a fully defender-aligned informant, a defender needs to have about 2 resources when 
faced with a fully attacker-aligned informant. And this number goes up quickly when the number of targets increases. This implies 
that when there is a large number of targets, a defender-aligned informant is worth many defensive resources.

5.3. Effect of misclassifying the informant

Fig. 6 shows the results when different defenders meet different informants. In the case where the defender knows the informant 
types (i.e., a “strategic” defender), the defender’s utility goes down as the number of targets increases. But the defender can get 
more utility if the informant becomes more defender-aligned. However, when the informant is not fully defender-aligned (an infor-

mant with type “random” or “attacker-aligned”), the defender can suffer a huge loss by blindly following the informant’s messages 
(“naive”). Again, this experiment shows that the strategic behaviors of the informant can have a huge impact on the defender’s 
utility.

5.4. Utility vs. number of informants

In this experiment, we explore how the number of informants influences the utilities of both the defender and the attacker, and 
how the influences change with respect to the informants’ types. We still set 𝑝(𝜃3) = 0, and change 𝑝(𝜃1) and 𝑝(𝜃2). As shown in 
Fig. 7, the defender gets higher utilities and the attacker gets lower utilities as the number of informants increases. This also happens 
when the informants become more defender-aligned. In addition, the defender’s marginal utility gain of having more defender-

aligned informants increases when there are fewer informants and decreases when there are more informants. This implies that 
when the informants have a low probability of being defender-aligned, having more informants is crucial for the defender to obtain 
a high utility. In this case, a reliable informant is worth multiple unreliable ones. But with more informants, the reliability of these 
informants becomes less important.

5.5. Number of resources vs. number of informants

In this experiment, we compare the effect of having different numbers of informants and resources. As for the informant’s type, 
we still set 𝑝(𝜃3) = 0, and let 𝑝(𝜃1) = 0.5 and 𝑝(𝜃2) = 0.5. Fig. 8 shows similar patterns to Fig. 7. The defender gets higher utilities and 
the attacker gets lower utilities as the number of informants gets higher or the number of resources gets higher. The effect of having 
more informants diminishes if the defender already has many resources to cover most targets. But in most real-world applications 
where defensive resources are scarce, having more informants can help the defender figure out the true target of the attacker, and 
thus significantly benefit the defender.

6. Conclusion

In real-world applications, there are many situations where the local community (i.e., the informants) participates in the security 
games between the defender and the attacker. However, the standard security model does not capture these strategic behaviors of the 
informants. In this paper, we provide a systematic study of security games with strategic informants to account for their behaviors. 
We first consider security games with a single informant case. We propose a well-defined definition of Strong Stackelberg-perfect 
Bayesian equilibrium and provide an efficient algorithm to solve for the optimal defender policies in polynomial time. We also 
consider a more complicated case with multiple strategic informants. Even though the defender’s strategy space grows exponentially 
with the number of strategic informants, we show there also exists a polynomial time algorithm to compute the optimal defender 
18

policy by proposing a novel plurality voting defense plan. Finally, we conduct comprehensive experiments to examine the impact 
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Fig. 4. Our study examines how variations in defender resources (𝑟) and informant observation probability (𝑝𝑤) (across different rows), and the informant type 

distributions (different grid points in each plot) affect the utility of both agents.
19
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Fig. 5. Defensive resources needed with a strategic informant.

Fig. 6. The defender’s utilities of different defenders meeting different informants, where “strategic+defender-aligned” means a strategic defender and a defender-

aligned informant, “naive+attacker-aligned” means a defender who blindly follows the attacker-aligned informant’s message.

Fig. 7. The effect of having a different number of informants and different types of informants on both the defender and attacker’s utilities.
20

Fig. 8. The effect of having a different number of informants and different numbers of resources on both the defender and attacker’s utilities.
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of strategic informants and showcase the efficiency of our algorithm. Our findings reveal that the presence of such informants 
substantially enhances the defender’s utility.

Moreover, this study opens up new avenues for many other interesting questions. For example, our strategic informant behavior 
model assumes perfect observations (i.e., an informant knows the exact target being attacked). However, it is also possible for the 
informants to have imperfect observations. It would be interesting to consider the case where each informant only has a noisy 
observation and study how to design the defense plan accordingly. In addition, besides the basic security game structure that we 
discussed in the paper, exploring the potential effect of strategic informants in other types of security games would be an intriguing 
avenue for future research. For example, in spatio-temporal security games that handle massive games with complex spatio-temporal 
settings, the attacker moves over time and thus the target changes. Even if the defender receives information about the attacker’s 
current location, this information can only be used to infer where the attacker may possibly move next, but may not help the defender 
to directly capture the attacker. It would be interesting to investigate how to utilize the informants’ information in such games.
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