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ABSTRACT Lately, designing optimal mechanisms for selling multiple items

Using Al approaches to automatically design mechanisms has been
a central research mission at the interface of Al and economics.
Previous approaches that attempt to design revenue optimal auc-
tions for the multi-dimensional settings fall short in at least one of
the three aspects: 1) representation — search in a space that prob-
ably does not even contain the optimal mechanism; 2) exactness
— finding a mechanism that is either not truthful or far from opti-
mal; 3) domain dependence — need a different design for different
environment settings.

To resolve the three difficulties, in this paper, we put forward a
unified neural network based framework that automatically learns
to design revenue optimal mechanisms. Our framework consists of
a mechanism network that takes an input distribution for training
and outputs a mechanism, as well as a buyer network that takes
a mechanism as input and output an action. Such a separation in
design mitigates the difficulty to impose incentive compatibility
constraints on the mechanism, by making it a rational choice of the
buyer. As a result, our framework easily overcomes the previously
mentioned difficulty in incorporating IC constraints and always
returns exactly incentive compatible mechanisms.

We then applied our framework to a number of multi-item auc-
tion design settings, for a few of which the theoretically optimal
mechanisms are unknown. We then go on to theoretically prove
that the mechanisms found by our framework are indeed optimal.
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1 INTRODUCTION

Designing revenue optimal mechanisms in various settings has
been a central research agenda in economics, ever since the seminal
works of Vickrey [45] and Myerson [30] in single item auctions.
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has also been established as an important research agenda at the
interface of economics and computer sciences [8, 9, 11, 21-23, 35,
39, 41, 42, 48, 49]

Due to the diversity in the researchers’ backgrounds, there are a
number of different angles to study this problem. The standard eco-
nomics theme aims to understand the exact optimal mechanisms in
various settings. To name a few, Armstrong [2] obtains the optimal
mechanisms of selling two items to one buyer, whose valuations of
the two items are perfect positively correlated (a ray through the
origin). Manelli and Vincent [24] obtains a partial characterization
of optimal mechanisms, in the form of extreme points in the mecha-
nism spaces. Pavlov [32] derives optimal mechanisms for two items
when the buyer has symmetric uniform distributions. Daskalakis
et al. [13] characterizes sufficient and necessary conditions for op-
timal mechanisms and derive optimal two-item mechanisms for
several valuation distributions. Tang and Wang [42] obtain the op-
timal mechanisms of selling two items, of which the valuations are
perfect negatively correlated. Yao [49] obtains the optimal mech-
anisms of selling two additive items to multiple buyers, whose
valuation towards the items are binary and independent.

Another category of research rooted in the AGT community aims
to resolve the difficulties of characterizing optimal mechanisms
via the lens of algorithm design. Cai et al. [8] and Alaei et al. [1]
gives algorithmic characterizations of the optimal BIC mechanisms
on discrete distributions using linear programs. Hart and Nisan
[21], Hartline and Roughgarden [22], Yao [48] find approximately
optimal mechanisms in various settings. Carroll [10] shows that
for a certain multi-dimensional screening problem, the worst-case
optimal mechanism is simply to sell each item separately.

The third category, at the interface of Al and economics, aims
to search for the optimal mechanisms via various Al approaches.
Conitzer and Sandholm [11] model the problem of revenue and wel-
fare maximization as an instance of constraints satisfaction problem
(CSP) through which the optimal mechanism may be found using
various search techniques, despite its general computation com-
plexity. Sandholm and Likhodedov [35] model a restricted revenue
maximization problem (within affine maximizing auctions) as a
parameter search problem in a multi-dimensional parameter space,
they find several sets of parameters that yields good empirical
revenue. Diitting et al. [14] aims to learn optimal mechanisms by re-
peatedly sampling. They obtain mechanisms that are approximately
optimal and approximately incentive compatible.

One advantage of these computational approaches is that most
of them are constructive so that one can systematically and com-
putationally generate optimal mechanisms. However, a difficulty
for most existing works in computer science (the second and third
categories) is that mechanisms obtained this way are either not
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optimal in the exact sense, or not truthful in the exact sense. As a
result, a typical economist may have a hard time to appreciate this
type of results. A more desirable approach would be constructive
on one hand and be able return exact incentive compatible and
(hopefully) exact optimal mechanisms on the other hand.

1.1 Our methodology

Motivated by the above observation, we aim to put forward a com-
putational approach that can design or assist one to design exactly
incentive compatible! and optimal mechanisms. Similar to the novel
approach introduced by Diitting et al. [14], we train a neural net-
work that represents the optimal mechanism using the valuation
distributions. Unlike their approach, however, we introduce another
neural network that represents buyer’s behavior. In particular, this
network takes a mechanism as input, and outputs an action. Our
network structure resembles that of the generative adversarial nets
(GAN) [18] but is essentially different because we do not need to
train the buyer’s network. This independent buyer network allows
us to easily model the IC constraints in an exact sense (which has
been a major difficulty in previous works) within our network as
well as any behavior model of this form. In contrast, Ditting et al.
[14] first propose to hardwire the IC constraints into the mecha-
nism network (which requires sophisticated domain knowledge
and the structure of the networks has to be domain specific). Such
an approach can only reproduce mechanisms in the domains where
the form of the optimal mechanism is known. To circumvent this
difficulty, they further propose to add IC as a soft constraint so that
the training objective is to minimize a linear combination of the
revenue loss and a penalty of IC violations. Yet, this would produce
mechanisms with small IC regrets rather than IC mechanisms.
Another innovation of our approach is that we represent a mech-
anism as a menu (a list of allocation-payment tuples) in the single
buyer case. Focusing on the menu representation is without loss of
generality. Because on one hand, according to the taxation principle
[46], any IC mechanism can be represented as a menu; on the other
hand, given a menu, by simply letting the buyer select the favorite
item from the menu, an IC mechanism is naturally induced. An
additional merit of using a menu to represent a mechanism is that
it enables explicit restrictions on the menu size of the mechanisms,
which measures the degree of complexity of a mechanism [20].

1.2 Our results

We then apply our computation-aided mechanism design frame-
work to the domain where a seller sells two items to one buyer. In
particular, we investigate the following problems.

o What is the revenue optimal mechanism when the menu
size is restricted? To the best of our knowledge, the optimal
mechanism of this kind remains unknown for our setting.

e What is the optimal mechanism for the case where the valua-
tion domain is a triangle? The previously studied cases with
two items all focus on rectangle shaped valuation domains
(expect for Haghpanah and Hartline [19]).

e What is the revenue optimal deterministic mechanism?

By exactly incentive compatible (or simply exact IC), we mean the IC constraints are
strictly respected, without any approximation or violation.

e What is the revenue optimal mechanism when the buyer has
combinatorial value?

Some experimental results we obtained are shown in Table 1
with comparison to the exact optimal solutions (some of them
are previously known results, while the others are our new find-
ings). Inspired by these empirical findings, with the techniques by
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Table 1: Comparison with the optimal mechanisms.?

Daskalakis et al. [13] and Pavlov [33], we then prove the exact op-
timal mechanisms for the first two problems (see the two informal
theorems below). To the best of our knowledge, this is the first time
to find the exact optimal mechanisms in these domains, so they are
of independent interests to the economics society as well.

THEOREM (RESTRICTED MENU S1zE). The optimal mechanism
for an additive buyer, v ~ U0, 1]2, with menu size at most three
is to either sell the first item at price 2/3 or sell the bundle of two
items at price 5/6, yielding revenue 59/108. In particular, the optimal
mechanism must be asymmetric even if the distribution is symmetric!

THEOREM (UNIFORM DISTRIBUTION ON A TRIANGLE). The optimal
mechanism for an additive buyer with value uniformly distributed in
{(v1,v2)|v1/c + v2 < 1,01, 02 = 0} is as follows:

e ifc € [1,4/3], two menu items: [(0,0), 0] and [(1, 1), \/c/_?:];
e ifc > 4/3, three menu items: [(0,0),0], [(1/c,1),2/3], and

[(1,1),2¢/3 + \Je(c — 1)/3].

1.3 Additional Related Work

Following Diitting et al. [14], Feng et al. [15] and Golowich et al.
[17] apply similar deep neural network architectures to the settings
with budget constraints and the settings without money.
Independent of the approach of utilizing neural networks for
designing revenue-optimal mechanisms under the standard setting,
there is a line of researches on using deep reinforcement learning
to design mechanisms in even more complicated environments,
known as reinforcement mechanism design [6, 7, 36, 38]. The high
level idea there is to first learn agent behavior models from data

2The computed revenue is not directly given by the loss of our network. Instead, we
ignore the buyer network and compute the expected revenue according only to the IC
mechanism induced by the menu that our network outputs. Here, REv and OPTREV
are the revenue computed using our method and the theoretically optimal revenue,
respectively. Optimality = REv/OPTREV.



and then use deep reinforcement learning to design the mechanism
with the environment being built upon the learnt behavior models.
Another potential application of neural networks for mechanism
design problems is to use neural networks to control the states of
certain dynamic mechanisms [3-5, 25-29, 37]. The known exact
optimal solutions are complicated and heavily rely on global opti-
mizations. However, in practice, historical data can be used to train
a heuristic policy via neural nets with good empirical performance.

2 PRELIMINARIES

In this paper, we consider the automated mechanism design prob-
lem for the single-buyer multi-dimensional setting. In this section,
we introduce the basic notions.

Environment. A seller (he) has m heterogeneous items for sale,
and a buyer (she) has different private values for receiving different
bundles of the items. An allocation of the items is specified by a
vector x € X C [0, 1]™, where x; is the probability of allocating the
i-th item to the buyer. An allocation x is a deterministic allocation,
if x € {0, 1}'™; otherwise a randomized or a lottery allocation.

An outcome of the mechanism consists of a valid allocation vector
x € X and a monetary transfer amount p € Ry, called payment,
from the buyer to the seller. With the standard quasi-linear utility
assumption,3 the valuation function v : X — R, describes the
private preference of the buyer, i.e., an outcome (x, p) is (weakly)
preferred than another outcome (x’, p’), if and only if:

u(x,p;v) == v(x) —p = v(x’) —p’ = u(x’,p’;v).
In other words, the outcome with the highest utility is preferable.

Mechanism. A naive mechanism is defined by a set of actions
and a mapping from actions to outcomes. According to the taxation
principle [46], any IC mechanism can be represented as a menu. In
addition, given a menu, by letting the buyer select her favorite item
from the menu, an IC mechanism is naturally induced. Formally,

Definition 2.1 (Naive Mechanism). A naive mechanism consists
of an action set A and an associated mapping from any action to a
possible outcome, ie., (x,p) : A +— X X Ry. In particular, there is
a special action L meaning “exiting the mechanism”:

x(L) =0,p(L) =0. (EXIT)

In such a naive mechanism, a strategy of the buyer is then a
mapping from the set of private valuation functions to the action
set, ie, s : V — A. Furthermore, if the buyer is rational, then her
strategy must maximize her utility:

s(v) € argmax, ¢ 4 u(x(a), p(a); v). (RATIONAL)

The corresponding outcomes of the actions, (x(a), p(a)), are also
known as menu items. Throughout this paper, we use [x(a), p(a)]
to denote a specific menu item, e.g., the zero menu item [0,0] =
[(0,...,0),0] corresponds to the exiting action L. Note that the
naive mechanism with menu representation is a very general model
of the mechanism design problem. In particular, even when the
buyer is not fully rational, as long as a buyer behavior is available,
the mechanism designer is still able to design the menu to maxi-
mize his objective assuming that the buyer responses according to

3For settings with general utility functions, our framework still works as long as the
buyer behavior model admits efficient mechanism optimization via gradient descent.

the given behavior model. The robustness of naive mechanisms is
indeed critical to the flexibility and generality of our methodology.

Direct Mechanism. With the above definition of naive mecha-
nisms, it is hard to characterize all the mechanisms with certain
properties, because the design of the action set could be arbitrary.
One critical step in the mechanism design theory is to apply the
revelation principle [31, p.224] to reduce the set of naive mecha-
nisms to a considerably smaller set of mechanisms — the direct
mechanisms. In a direct mechanism, the action set is identical to the
set of valuation functions and the identity mapping is also required
to be an optimal strategy for a rational buyer. Formally,

Definition 2.2 (Direct Mechanism). A direct mechanism fixes the
action set A = V and remains to specify the mapping from V to
the set of possible outcomes.

In addition, the identity mapping must be utility-maximizing
for any rational buyer, or equivalently as the following incentive
compatible (IC) and individually rational (IR) constraints:

v € argmax,, ¢y u(x(v’), p(v’); v), (I0)
u(x(v), p(v);v) > 0. (IR)

In fact, the constraints (IC) and (IR) are deduced from the con-
straints (RaTioNAL) and (EXIT).

Designer’s Goal. The goal of the mechanism designer is to maxi-
mize the expectation of his objective r : X X Ry +— R, where the
expectation is taken over his prior knowledge about the buyer’s
private valuation function, i.e., v ~ F.

We emphasize that our methodology is not restricted to any
specific objective. However, in this paper, we would focus on the
setting with the seller’s revenue as the objective:

r(x,p) =p-
Because revenue-optimal mechanism design in multi-dimensional
environment is a both challenging and widely studied problem.
Applying our method in such a setting allows us to verify that (i)
whether it can find the optimal or nearly optimal solution, and (ii)
whether it can provide a simpler approach to a hard problem.

(OBJECTIVE)

Assumptions. In most sections of this paper, we will make to the
following two assumptions. As we just stated, we would first verify
that our method can be used to recover the optimal solutions to
some known problems and little exact optimal solution is actually
discovered without these two assumptions.

ASSUMPTION 2.3 (ADDITIVE VALUATION FUNCTIONS). The buyer’s
valuation function v is additive, i.e., v can be decomposed as follows:

u(x) = Zie[m] vixj, wherev; € Ry.

With the additive valuation assumption, we refer each v; as the
value of the i-th item. Moreover, we make the following indepen-
dent value assumption.

AsSUMPTION 2.4 (INDEPENDENT VALUES). The prior distribution
F is independent in each dimension and can be decomposed as F =
Fi X -+ X Fy,, where each v; is independently drawn as v; ~ Fj.

In the meanwhile, to show that our method is not limited to
these assumptions, in Section 5, we show how it can be applied to
settings without these assumptions. In particular, with the help of



the characterization results by Daskalakis et al. [13], we are able to
verify the optimality of the solution to an instance with correlated
value distribution (while still with additive valuation functions).

3 PROBLEM ANALYSIS

Although the revelation principle is widely adopted in the theoret-
ical analysis of mechanism design problems to efficiently reduce
the design spaces, we decided not to follow this approach when
applying neural networks to solve such problems.

The main difficulty of directly following the traditional revelation
principle based approach is two-fold:

o It is unclear that what network structure can directly encode
the IC and IR constraints;

o Some of the characterization results for additive valuation
setting® can be cast into certain network structures, but these
are restricted and heavily rely on the domain knowledge of
the specific mechanism design problem.

In fact, the above difficulties also limit the generality of the meth-
ods built on these elegant but specific characterizations. For exam-
ple, there might be some fundamental challenges while generalizing
such approaches to the settings where the buyer is risk-averse (risk-
seeking) or has partial (or bounded) rationality, etc [16, 34, 40, 47].
Furthermore, in many real applications, the buyer behavior models
may come from real data instead of pure theoretical assumptions.

To circumvent these difficulties and ensure the highest extend-
ability, in this paper, we build up our method from the most basic
naive mechanisms — simply let the buyer choose her favorite option
— which is even more close to the first principles of how people
make decisions. Interestingly, via this approach, our method will
automatically produce an exactly incentive compatible and individ-
ually rational mechanism. To the best of our knowledge, this is the
first neural network based approach that outputs a both exactly IC
and exactly IR mechanism under multi-dimensional settings.

Example 3.1. Consider the case of selling two items to a buyer
with value profile uniformly distributed in [0, 1]. Suppose the menu
contains 2 items: x() = (0, 0),p(1) =0and x® = (1, 1),p(2) =1.
The utility of choosing each menu item is u D = 0andu® =
v1 + vz — 1. The buyer’s strategy for value profile v is s(v) =
argmaxi{u(i>}. Then we get an indirect mechanism by letting the
buyer choose her favorite menu item instead of reporting v. Fur-
thermore, according to the revelation principle, there exists an
IC mechanism equivalent to the above indirect mechanism, with
allocation x(v) = x®)) and p(v) = p(s(v)).

Suppose v = (0.3,0.8), then u@ > 4 g(v) = 2, and in the
corresponding IC mechanism, x(v) = (1, 1), p(v) = 1.

3.1 Revisiting the Naive Mechanism

We then briefly explain how the naive mechanism helps us to for-
mulate a neural network based approach for mechanism design.
Intuitively, the naive mechanism in our context simply provides
the buyer various menu items, i.e., allocations associated with differ-
ent prices, and lets her choose the most preferred one. In this case,
once a buyer utility function is specified (by assumption or learnt

4Such as Myerson’s virtual value for single-dimension and Rochet’s increasing, convex
and Lipschitz-1 buyer utility function for multi-dimension [14].
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Figure 1: A high-level abstraction of the neural networks.

from data), her choice is simply an argmax of her utility function.
As long as the utility function could be encoded via neural network,
which is a mild assumption, the buyer’s behavior model can be
encoded as a neural network with an additional argmax layer.

High-level sketch of the network structure. For now, we can think
the encoded mechanism as a black-box network outputting a set of
allocation-payment pairs (see Figure 1(a)). The pairs then are fed
into many “buyer networks”, each with different private valuation
functions. Finally, the “buyer networks” output their choices and
the choices are used to evaluate the expected objective of the mech-
anism designer. The choices are weighted by the probabilities of
the corresponding private valuation functions and the training loss
is simply the negative expected objective.

One key advantage of formulating the network as a naive rather
than a direct mechanism is that no additional constraints are re-
quired for the former. In fact, the difficulty of optimizing the direct
mechanism network (see Figure 1(b)) is that the violations of IC
or IR constraints are not directly reflected in the designer’s objec-
tive. Hence the standard optimization methods for neural networks
do not directly apply. In contrast, in the naive mechanism net-
work, the effect of any mechanism outcome mutations on the buyer
preferences is reflected in the designer’s objective via the “buyer
networks”. Such properties facilitate the optimization in standard
training methods of neural networks.

4 NETWORK STRUCTURE

Our network structure contains two networks: the mechanism
network and the buyer network. Since the networks represent a
naive mechanism, the output of the mechanism network is a set
of allocations along with different prices (or menu items) and the
buyer network takes the set of menu items as input and outputs
her choice. The overall network structure is shown in Figure 2.

4.1 Mechanism Network

In most applications, a neural network usually takes a possible input
x and then outputs a possible output y. However, our mechanism
network is different from them in the sense that it outputs a set
of menu items, which already represents the entire mechanism.
Therefore, our mechanism network does not actually need to take
an input to give an output.

However, in order to fit in most neural network frameworks, we
use a one dimensional constant 1 as the input to our mechanism

SEven if the buyer utility function is not available, such a gadget could be replaced by
any buyer behavior model (given or learnt from data) encoded as a neural network.
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Figure 2: Overall network structure.®

network. The output of the network consists of two parts. The first
part is an allocation matrix X of m rows and k columns, where m
is the number of items and k is the menu size. Each column of X
contains the allocation of all m items. The second part is a payment
vector p of length k, representing k prices for the k menu items.
The last column of the allocation matrix and the last element of
the payment vector is always set to be 0. This encodes the “exit”
action of the buyer and ensures that the buyer can always guarantee
non-negative utility by choosing this menu item.

The structure of the mechanism network is simple enough. The
constant input 1 goes through a fully connected layer to form each
row X; (except the last column, which is always 0) of the allocation
matrix. We choose the sigmoid function as the activation function
since the allocation of each item is always in [0, 1]. The payment
vector is even simpler. Each element p; of the payment vector is
formed by multiplying the input constant with a scalar parameter.
Therefore, the training of our network is very fast.

4.2 Buyer Network

The buyer network is a function that maps a mechanism to the
buyer’s strategy s(v) (a distribution over all possible menu items)
for each value profile v = (v1,vs,...,vn), where each v; is the
value of the i-th item. The output of the mechanism network (the
allocation matrix X and the payment vector p) is taken as the input
to the buyer network. To define the output of the buyer network,
suppose that each v; is bounded and 0 < v; < ;. We discretize
the interval [0, ;] to d; discrete values. Let V; be the set of possible
discrete values of v; and define V =V X - - - X Vp,.

The output of the buyer network is a (m + 1)-dimensional tensor,
with the first m dimensions being the m-dimensional buyer value,
and the last dimension representing the probability of choosing
each menu item. Therefore, the i-th (i < m) dimension of the tensor
has length d; and the last dimension has length k.

Although here we use the same notation as in Assumption 2.3,
this notation does not lose any generality since we do not make any
The buyer network corresponds to a rational buyer with quasi-linear utility. In general

cases, the buyer network can be constructed according to her utility function, or other
networks trained from interaction data.

assumption about the buyer’s valuation function. It is also worth
mentioning that the buyer’s utility function is not necessary to build
the buyer network, since the network only outputs buyer’s strategy,
which may not even be consistent with any utility function.

The buyer network can be any network that has the same format
of input and output as described above. When we do not know the
buyer behavior model but have plenty of interaction data (e.g., from
the sponsored search), we can train a buyer network from there.

When the buyer’s utility function is known, we can manually
design the buyer network structure so that the network outputs
the buyer’s strategy accurately. For example, under Assumption 2.3
and Assumption 2.4, we know that the buyer always chooses the
menu item that maximizes her additive valuation with probability
1. We then construct m m-dimensional tensors %1, ..., ¥m, each
of size dq X d2 X - - - X dpy,. The entry of index jija . .. jm in ¥; has
value vfi, which is the j;-th discretized value of the interval [0, 7;].
Recall that X; represents the allocations of the i-th item in the menu.
By “multiplying” each ¥; with X;, we get an (m + 1)-dimensional
tensor 2 of size di X - - - X dp, X k, where each element of 7] is the
value of the i-th item obtained by choosing menu item k. By further
adding the 2;’s together, we get a tensor 2" = };¢[n] Zi, Where
the entry at index jij2 . . . jmkK is the buyer total value of choosing
the x-th menu item while her value vector being (v}, ..., v™).

Similarly, we also construct a payment tensor & of the same
size, where each entry equals to the payment of the x-th menu item.

Finally, we compute the utility tensor % by

U = Zieim) Z2i) = 2,

and then apply the softmax function across all the menu items for
each value profile in the utility tensor % to produce the output .7,
an aggregation of s(v), Vv € V. For each value profile, the menu
item with the largest utility has the highest weight. We multiply
the utility tensor by a large constant to make the weight of the best
menu item close enough to 1.

4.3 Loss Function

The loss function can be any function specified according the mech-
anism designer’s objective. However, in this paper, we mainly focus
on how to optimize the revenue of the mechanism and set the loss
function to be the negative revenue.

Recall that the output of the buyer net is the buyer’s strategy
s(v) for each value profile v. Then the loss function of the nets is

Loss = —REv = — Y,y Pr[v] pTs(v),

where Pr [v] is the probability of v in the joint distribution F.
Note that in the above loss function, we do not make any as-

sumption about the probability distribution Pr[v]. Our networks

are able to handle any joint distribution, including correlated ones.

5 EXPERIMENTS AND ANALYSIS

In this section, we first list some results of our neural networks
in Section 5.1. Inspired by these results, we are able to find the
closed-form optimal mechanisms in some cases. We list theoretical
analysis and proofs in Section 5.2.

5.1 Experiment results
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Figure 3: Computed solutions vs. optimal solutions.

5.1.1  Uniform [0,c] X [0, 1]. The optimal mechanism for this
setting is already known [43]. We draw both the optimal mech-
anism and our experiments results together in Figure 3(a), 3(b),
3(c), 3(d). The color blocks represents the mechanism given by our
network, where each color corresponds to a different menu item.
The dashed line represents the optimal mechanism (they are NOT
drawn according to the color blocks). The two mechanisms are
almost identical except for the slight difference in Figure 3(c).

5.1.2  Correlated Distribution: Uniform Triangle. Suppose that
the buyer’s value v = (v1, v2) is uniformly distributed among the
triangle described by v1/c + vy < 1,01 > 0,02 > 0, where ¢ > 1.
The color blocks in Figure 3(e) and Figure 3(f) show the mechanisms
given by our network. Note that in our framework, the joint value
distribution is only used to compute the objective function. So our
framework can handle arbitrary value distributions.

In fact, guided by these experiment results, we are able to find the
closed-form optimal mechanism for this kind of value distributions.
In particular, there are two possible cases for this problem. When
c is large, the optimal mechanism contains two menu items. And
when ¢ is small, the optimal contains only two menus, i.e., use a
posted price for the bundle of the items. Formally, we have

THEOREM 5.1. When ¢ > 4/3, the optimal menu for the uni-
form triangle distribution contains the following items: [(0,0), 0],
[(1/ec,1),2/3], and [(1,1),2¢/3 — y/c(c — 1)/3].

When ¢ < 4/3, the optimal menu for the uniform triangle distri-
bution contains the following items: [(0,0), 0] and [(1, 1), \/c/_S]

Note that the condition ¢ > 4/3 guarantees that the price of the
third menu item is positive. The proof is deferred to Section 5.2.
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(a) Menu size at most 2. (b) Menu size at most 3.

Figure 4: Uniform [0, 1]> with restricted menu size.

5.1.3  Restricted Menu Size. The output of our mechanism net-
work is a set of menu items. Thus we can control the menu size by
directly setting the output size of the network.

Restricting the menu size results in simpler mechanisms. It is
known that the size of the optimal menu could be infinitely large
[13]. Such results motivate the study of simple mechanisms, as they
are easier to implement and optimize in practice.

We consider the case where the buyer’s value is uniformly dis-
tributed in [0, 1]2. It is known that the optimal mechanism contains
4 menu items. When the menu can only contain at most 2 items, the
optimal mechanism is to trivially set a posted price for the bundle.
The experiment results are shown in Figure 4.

Surprisingly, when the menu can have at most 3 items, our net-
work gives an asymmetric menu, despite that the value distribution
is symmetric. In fact, we can also find the optimal menu with at
most 3 items analytically. Our analysis shows that the optimal menu
is indeed asymmetric. The intuition is that, if we add a symmetry
constraint to the solution, then the optimal menu degenerates to
a 2-item one. We provide the theoretical result here, but defer the
proof to Section 5.2.

THEOREM 5.2. The optimal mechanism of menu size at most three
for two additive items with v ~ U[0,1]? is to sell the first item at
price 2/3 or the bundle at price 5/6, yielding revenue 59/108.

In addition, the optimal mechanism is unique except for its sym-
metric counterpart.

5.1.4  Unit-Demand Buyer. The unit-demand setting is also in-
tensively studied in the literature. In this setting, the allocation must
satisfy x1 + x2 < 1. [44] provides detailed analysis and closed-form
solutions on the unit-demand setting. With slight modifications, our
mechanism network can also produce feasible allocations in this
setting. Instead of applying the sigmoid function to each element of
the allocation matrix, we apply a softmax function to each column
(representing each menu item) of the allocation matrix. However,
with such a modification, the allocation satisfies x1 + x2 = 1 rather
than x; + x2 < 1. The solution is to add an extra dummy element
to each column before applying the softmax function.

5.1.5 Combinatorial Value. Our framework structure can also
handle the case where the buyer has combinatorial values. The
following Figure 5(b) shows mechanism given by our network for
a buyer with u(v1, v2) = X101 + X202 + x1V1x202 — p. In this case,
we need to slightly modify the buyer network by adding the extra
x1v1x202 term, which can be easily implemented.
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Figure 5: Empirical results.

5.1.6  Deterministic Mechanisms. We can use our networks to
find the optimal deterministic mechanisms for any joint value dis-
tributions. Similar to the restricted menu size case, deterministic
mechanisms are also important in practice, since they are easy
to understand and implement. In this case, the mechanism net-
work can be further simplified, since for selling 2 items, there
can only be 4 possible deterministic menu items, with allocations
(0,0),(0,1),(1,0), (1, 1). Therefore, the only parameters in the mech-
anism network are the corresponding prices.

Figure 5(c) shows our experiment results on uniform distribu-
tions over the triangle described in Section 5.1.2. By Theorem 5.1,
the optimal mechanism is not deterministic when ¢ = 2. Our exper-
iment shows that such a constraint reduces the revenue by 0.14%.

5.2 Proof of optimality

In this section, we provide theoretical proofs for some of our results.
To the best of our knowledge, these results are previously unknown.

5.2.1 Proof of Theorem 5.1. As described in Section 5.1.2, there
are two possible cases for the optimal mechanism when the buyer’s
value is uniformly distributed among the triangle. We solve the
problem case by case.

To prove Theorem 5.1, we apply the duality theory [12, 13] to
our setting. Let f(v) be the joint value distribution of v = (v1, v2),
and V be the support of f(v). Define measures g, 15, s as follows:

® Jip has a point mass at v = 0;

® Ji15 is only distributed along the boundary of V, with density
f(v)(vn(v)), where n(v) is the outer unit normal vector at v;

oy is distributed in V with a density Vf(v) - v + (n + 1) f(v),
where n is the number of items.

Let pp = po + pg — fis, p+ and p_ be two non-negative measures
such that p = pry — p—, and V; and V_ be the support sets of y; and
pi—. Daskalakis [12] shows that an optimal mechanism for selling n
items to 1 buyer can be found by solving the following program:

sup /V udpy — fV udp_
st u() —u@’) < (v =041, Yo € Vi, 0" € V_ (P)
u is convex, u(v) =0

where u(v) is the utility of the buyer when his value is v, and
(@ = 0+l = 2, max(0,v; —v}).
Relax the above program by removing the convexity constraint

and write the dual program of the relaxed program:

inf [, lI0 =)l dy

D
sty eT(py,p-) ()

where I'(p4, ) is the set of non-negative measures y defined over
V x V such that, for any V’ C V, the following equations hold:

Joxy dy = (V) and - fyy, dy = p-(V)
LEmMA 5.3 ([13]). (D) is a weak dual of (P).

We omit the proof here but refer readers to Daskalakis et al.
[13] and Daskalakis [12] for details. The dual program (D) has an
optimal transport interpretation. We “move” the mass from p to
other points to form p_ and the measure y corresponds to the
amount of mass that goes from each point to another in V.

Although (D) is only a weak dual of (P), we can still use it to
certify the optimality of a solution. We already give a menu in Theo-
rem 5.1. Therefore, the relaxed convexity constraint is automatically
satisfied if the buyer always choose the best menu item.

In our case of f(v) = 2/c, we have: V = T,v = (0,0), g has a
constant line density of 2/V1 + ¢2 along the segment v /c + v =
1,0 < vz < 1, and 5 has a constant density of 6/c over T.

Let R; be the region of T such that for any v € R;, choosing
menu item i maximizes the buyer’s utility.

It is straightforward to verify that the measures y4 and pi— are
balanced inside each region, i.e., y+(R;) = p—(R;), Vi. Therefore,
the transport of mass only happens inside each region.

We construct the transport in Ry and Ry as follows:

® Rji: 4 is concentrated on a single point 0. We move the mass
at 0 uniformly to all points in Ry;

® Ry: uy is only distributed along the upper boundary of R;.
For each point v at the upper boundary, we draw a vertical
line [ through it, and move the mass at v uniformly to the
points in L N Ra.

However, for R3, 4 is also only distributed along the upper
boundary, but there is no easy transport as for Ry and Ry. We
provide the following Theorem 5.4.

LEmMA 5.4. For Rs, there exists a transport of mass, such that for
any two points v, v’, if there is non-negative transport from v to v/,
thenv; > vlf, Vi.

The proof of Theorem 5.4 is omitted due to space limit. With
this lemma, we can simplify our proof of Theorem 5.1, and do not
need to construct the measure y explicitly.

PROOF SKETCH OF THEOREM 5.1. It is not difficult to verify that
the revenue of the menu provided in Theorem 5.1 is:

Rev =2 [4+c+e(e = 1)

Now we compute the objective of the dual program (D). And
to prove the optimality of the menu, it suffices to show that the
objective of (D) is equal to REv.

Note that in our construction of the transport in Ry and Ry,
we only allow transport inside each region. In R;, we transport
mass from point 0 to other points. So it does not contribute to the
objective of (D), and we can just ignore R1. In Ry, the mass is always
moved vertically down. Therefore,

Jror, 1@ =00l dy = fo o llo=0llidy = fo e 10" = Olly dy



For R3, according to Theorem 5.4, it is also true that when there is
positive mass transport from v to v’, we have v; > vlf, Vi. Thus,

Joor, 1@ =02l dy = fo g lo=0lldy = fp g Il = Ollr dy

Therefore, the objective of the dual program (D) is:

Frar 1@ =211y = ( feycm, + oy, ) 12 = 2+ lndy

=Z[4+c++fc(c—1)] =Rev

which certifies that the menu is optimal. O

When ¢ < 4/3, the optimal mechanism only has two menu items.

THEOREM 5.5. Forany 1 < ¢ < 4/3, suppose that the buyer’s type
is uniformly distributed among the set T = {(v1,v2) | v1/c + vg <
1,01 = 0,v9 > 0}. Then the optimal menu contains the following two

items: [(0,0),0] and [(1, 1), /c/3].

We omit the proof of Theorem 5.5 since one can use the same
trick in Theorem 5.4.

5.2.2  Proof of Theorem 5.2. We now consider the optimal mech-
anism of menu size at most three for value distribution U[0, 1]. In
particular, we omit the proof for the case of menu size at most two.

THEOREM 5.6. The optimal symmetric optimal mechanism of menu
size at most three for two additive items withv ~ U[0, 1]% is to sell the
bundle of two items at price V6/3, yielding revenue 2/6/9 ~ 0.54433.

We demonstrate the proof of Theorem 5.2 through the basic
parametric method. Note that there must be a zero menu item
Z =1(0,0),0], and hence we have two menu items to determine.
Suppose that the remaining two menu items are A = [(«, f), p] and
B = [(y, 9), q]. We then solve the following problem:

max REeV(A,B,Z)

3M
st. a,p,y,8 €[0,1], p,q = 0. (SMENU)

To establish the connection between the menu and the revenue,
let S4 be the set of values that menu item A is preferred: S4 =
{(v1,02) € [0,11%[(v1,02) - (&, B)=p = (v1,02)- (v, 8) =g A (v1,02)-
(a, p) — p = 0}. Similarly, we define Sg and Sz be the set of values
where menu item B and menu item Z are preferred, respectively:
Sg = {(v1,v2) € [0,1%|(v1,v2) - (y.8) — q = (v1,02) - (@, ) —
p A (01,02) (y,8) —q = 0}, Sz = {(v1,v2) € [0, 1140 > (v1,v2) -
(a,)—p A 0 = (v1,v2) - (y,6) — q}. For any measurable set
S € [0,1]?, let |S| = Pr[(v1,v2) € S] be its probabilistic measure.
Then the revenue of the mechanism with menu items A, B, and Z is

REV(A,B,Z) = |Sal -p+1SBl - q. (3MENUREV)

There are two major challenges to solve the program (3MENU):
First, there are too many possible cases with different formulas
of |S4| and |Sg|, hence the formula of REV(A, B, Z). In particular,
there are 4 possible intersection patterns between the boundary of
the square [0, 1]% and the intersections of every two menu items
(54NSB, SpNSz, Sz NSz). Hence roughly 4% = 64 different cases.
Second, even within each specific case, REv is still a high-order
function with 6 variables, no guarantee for closed-form solutions.
To overcome the two challenges, the following lemmas are criti-
cal to reduce both the number of different cases and free variables:

V2 V2 V2
1 o.0) 1 (-11) A 1 (p-11) A
(1,v;) 1, ;)
A V1)) v3v3)
7 B
B
VA L (1,v)))
“]l.q‘.zn'i B (g,0)’ (l%]
0 1v1 0 1v1 0 1M
(a) Case 1 (b) Case 2 (c) Case 3

Figure 6: Three possible cases for the proof of Theorem 5.2.

LEmMMA 5.7. Without loss of generality, the optimal mechanism of
menu size at most three includes bundling (1, 1) as one menu item.

Proor skeTcH. Without loss of generality, suppose p > gq. There
must be an optimal mechanism with « = = 1. Replacing menu
item A with A” = [(1, 1), p] yields a weakly higher revenue. O

LEMMA 5.8 ([33, ProposiTION 2]). For v ~ UJ0,1]%, consider
a mechanism with a menu item [(y, S), q] such that y,§ # 1 and
(y,8) # (0,0), then by replacing the menu item with [(y’,8”), q’] (the
price " may also be different), the revenue of the new mechanism is
no less than the original, wherey’ = 1 oré’ = 1 or(y’,8’) = (0,0).

PRrOOF OF THEOREM 5.2. By Lemma 5.7, we fix @ = 1 and § = 1.
Moreover, without loss of generality, we could focus on the cases
with p > g. Otherwise, the menu item B will be dominated by A
and Z, i.e., Sg = 0, hence reduced to a mechanism of menu size at
most two, where the optimal revenue is at most 26 /9.

Similarly, by Lemma 5.8, we fix, without loss of generality, y = 1.
Otherwise, if (y,d) = (0,0), the menu item B is dominated by Z,
again reduced to a mechanism of menu size at most two.

Therefore, we remain to solve (3MENU) with additional con-
straints: « = f§ = y = 1 and p > q. Now consider the values
v = (v1,v2)in S4 N Sp,

SaNSg:(v1,v2)(1,1) —p = (v1,v2) - (1,6) — q.
Similarly, S4 NSz : (v1,v2)-(1,1) = p,SpN Sz : (v1,v2)(1,6) = g,
and hence S4 N Sp N Sz : v] = %, vy = % Note that if S4 or
Sp is empty, there would be only two menu items and the revenue
cannot be more than 26 /9. Otherwise:

e For S5 not empty, we must have v;‘ < 1, hence % <1;

e For Sp not empty, we must have v} < 1, hence ql—_%p <1.

Based on the above two constraints, there are three possible cases
(see Figure 6). Their solutions are summarized as follows.

LEmMMA 5.9 (CasE 1). Conditioned on p < 1, the optimal mecha-
nism consists of three asymmetric menu items, i.e, A : [(1,1),5/6],
B:[(1,0),2/3], Z : [(0,0),0], and yields revenue 59/108.

LEMMA 5.10 (CASE 2). Conditioned onp > 1 > q, the optimal

mechanism yields revenue 14/27.

LEmMMA 5.11 (Cask 3). Conditioned onp > q > 1, the revenue of
the optimal mechanism is no more than 1/2.

In summary, the optimal mechanism with menu size at most 3 is
to sell the first item at price 2/3 or the bundle of two items at price
5/6, yielding revenue 59/108. O
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