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Abstract
In online ad auctions, when an Internet user’s certain actions trig-

ger an auction, the auctioneer (the platform) usually sends the

information about the user to help the buyers better estimate their

valuations. However, by strategically revealing only partial infor-

mation, we cannot only improve the revenue of the auction, but

also help protect the privacy of the user.

In this paper, we propose a privacy measure in the online ad auc-

tion setting, and seek to maximize a convex combination of revenue

and privacy. We formulate the problem as a convex optimization

program and derive structural results and properties of the pro-

gram. We prove that any combination coefficient achieves a certain

fraction of the optimal revenue gain and privacy gain, and that we

can trade-off between revenue and privacy by simply tuning the

combination coefficient. We also show that the gap between the

optimal revenue and the revenue achieved by revealing no informa-

tion can be bounded by a certain valuation discrepancy between the

buyers. We also conduct extensive experiments (on both synthetic

and real data) to show the effectiveness of our method.
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1 Introduction
Online advertising has been one of the most important revenue

sources of most major Internet companies. The total online ad

revenue in the US hit $209.7 billion in 2022
1
, and is still rapidly

growing. Advertising platforms have developed different types of

ads. For example, when an Internet user searches a keyword in a

search engine, the resulting page usually includes both sponsored

results (ads) and organic results. The space containing sponsored

results is divided into several slots, where each slot can be filled

with an ad. The seller (the search engine) sells the opportunity

for displaying ads through auctions, and interested advertisers

compete to win the slots. Another example is ad exchanges, where

the platform does not provide slots, but sells slots provided by

1
https://www.statista.com/statistics/183816/us-online-advertising-revenue-since-

2000/
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publishers to potential buyers. These publishers are usually third-

party websites that have a reserved slot to display ads.

Despite differences in advertising types, these ad platforms share

a similar advertising process. An auction is usually triggered by the

Internet users’ certain actions (e.g., searching a keyword, visiting a

webpage). The seller then sends information about the user to the

buyers to help them better evaluate this ad display opportunity. In

such a process, the platform may share sensitive information (age

group, browsing history, cookies, IP address, device ID, etc.) about

the user with the advertisers. Even worse, both ad platforms and

advertisers have networks that uses technologies such as “cookie

syncing” to help one another better identify the Internet user
2
. The

use of such technologies has become more and more common these

days and may explain why the ads for the same product appear

mysteriously on different websites. These privacy issues have led

to complaints and lawsuits filed against major ad auction platforms

over the years
3
.

To tackle this problem, an intuitive idea is to apply privacy

preserving concepts and techniques, such as differential privacy

[11, 12] and 𝑘-anonymity [29]. These techniques basically add noise

to the original data so that data receivers can only obtain inaccurate

but still useful data. However, they have not been widely integrated

into the ad auction process for various reasons. For example, the

diversity of Internet users requires very large noise to protect their

privacy, which may result in the advertisers getting useless infor-

mation.

In this paper, we propose to use the so-called “Bayesian persua-

sion” [22] to protect the privacy of the users. The intuition behind

Bayesian persuasion is to send randomized signals to the advertisers

based on the actual Internet user. Since the signal is randomized, the

advertisers can only get a posterior belief about the user’s identity.

Hence it is also called a “signaling scheme”. The idea of applying

signaling schemes in ad auctions is not new [14]. However, to the

best of our knowledge, we are the first to consider how to protect

privacy with signaling schemes in online ad auctions.

The application of signaling schemes requires a prior belief about

the Internet users. Such a prior is quite easy to obtain in online ad

auctions as each advertiser participates in many auctions every day.

However, both differential privacy and 𝑘-anonymity do not con-

sider priors. Compared with differential privacy and 𝑘-anonymity,

signaling schemes can utilize more information and provide us with

fine-grained control over the magnitude of noise added to different

locations of the original information space. We aim to optimize

the platform’s revenue without sacrificing too much privacy. We

formulate the problem as a mathematical program. It turns out that

the problem is equivalent to optimizing a convex combination of

both revenue and privacy.

1.1 Our Contributions
We make the following contributions in this paper:

• We propose to use signaling schemes to protect users’ pri-

vacy in online ad auctions and formulate the problem as a

mathematical program;

2
https://clearcode.cc/blog/cookie-syncing/

3
https://www.reuters.com/legal/litigation/google-privacy-lawsuit-over-ad-bidding-

process-go-forward-2022-06-14/

• We provide structural results of the optimal signaling scheme

and derive theoretic guarantees in terms of revenue gain and

privacy gain;

• We conduct extensive experiments to show the effectiveness

of our method on both synthetic and real data sets.

1.2 Related Work
Researches on privacy issues in online ad auctions began more

than a decade ago. Evans [15] study how private information can

benefit advertisers’ ad targeting. Goldfarb and Tucker [17], John-

son [20] show that with privacy regulations, ad auctions are less

effective in terms of targeting and revenue generation. However,

it is shown that narrow ad targeting may reduce competition, and

thus harms revenue [3, 4, 7, 25]. This is also reflected in our paper.

Baltrusaitis et al. [2] investigate the influence of differential privacy

on estimating conversion rates in ad auctions.

Another closely related topic is the so-called “Bayesian persua-

sion”. This concept was first proposed by Kamenica and Gentzkow

[22], and later followed by many [6, 8, 18, 30, 32]. More recently,

Bergemann et al. [5], Junjie et al. [21] apply Bayesian persuasion

to click-through rate (CTR) estimations. The closest to ours is [14].

They consider how to optimize revenue by revealing partial infor-

mation without taking privacy issues into consideration.

Our paper is also related to entropic regularizations in optimal

transport [9, 13, 23] and machine learning [24, 26] problems. For

example, Cuturi [9] provides the Sinkhorn algorithm that can solve

the entropic optimal transport problem very efficiently. Eckstein

and Nutz [13] studies the stability problem of the entropic optimal

transport. Recently, entropic regularization has also been applied to

reinforcement learning [16, 31]. Most of these studies apply entropic

regularizations to obtain an approximate and fast solution, while

in our paper, the regularization term is used as a privacy measure.

2 Preliminaries
Consider an ad auction model with one ad slot for sale. Let 𝑁 be the

set of 𝑛 buyers, i.e., |𝑁 | = 𝑛 > 1. In real-time bidding (RTB) actions,

when an Internet user searches a keyword in a search engine or

visits a certain webpage, the seller (e.g., a search engine or an ad

exchange platform) sends information about the user characteristics

to the buyers. And the buyers then make use of such information

to determine their bids and send them back to the seller.

Let𝑈 be the set of possible users with |𝑈 | =𝑚. The user 𝑢 𝑗 ∈ 𝑈
is clearly a random variable to the buyer before receiving any

information from the seller. Suppose that 𝑢 𝑗 follows a publicly

known distribution 𝑞(𝑢 𝑗 ). Without loss of generality, we assume

𝑞(𝑢 𝑗 ) > 0 since we can safely ignore 𝑢 𝑗 if 𝑞(𝑢 𝑗 ) = 0. Let 𝑣𝑖 𝑗 and

𝑏𝑖 𝑗 be buyer 𝑖’s valuation and bid when 𝑢 𝑗 is sent to the buyer.

Denote by 𝑐𝑖 𝑗 the probability that user 𝑢 𝑗 clicks on buyer 𝑖’s ad if it

is shown to the user, i.e., the click-through rate (CTR). The seller

ranks the buyers by 𝑏𝑖 𝑗𝑐𝑖 𝑗 and uses the second-price auction to sell

the ad slot, i.e., the winner is

𝑖∗ = arg max

𝑖

{𝑏𝑖 𝑗𝑐𝑖 𝑗 }.



Balancing Revenue and Privacy with Signaling Schemes in Online Ad Auctions WSDM ’25, March 10–14, 2025, Hannover, Germany.

The winner only pays when the user clicks on the ad, and the

payment is:

𝑝𝑖∗ =
𝑣𝑖2 𝑗𝑐𝑖2 𝑗

𝑐𝑖∗ 𝑗
,

where 𝑖2 = arg max𝑖∈𝑁 \{𝑖∗ } {𝑏𝑖 𝑗𝑐𝑖 𝑗 }. Since the second-price auc-
tion is truthful, all the buyers will use their valuations as bids.

Instead of sending 𝑢 𝑗 directly to the buyer, the seller can choose

to reveal only partial information about the user. Following the so-

called “Bayesian persuasion” model [22], we assume that the seller

can design a “signaling scheme” as a means of revealing partial

information. Specifically, let 𝑆 be the set of possible signals that

the seller can send to the buyers. Let 𝜋 (𝑠𝑘 |𝑢 𝑗 ) be the probability
of sending signal 𝑠𝑘 when the actual auction context is 𝑢 𝑗 . There-

fore, after receiving 𝑠𝑘 , the buyer will update their belief about the

auction context with the Bayes’ rule:

𝑞(𝑢 𝑗 |𝑠𝑘 ) =
𝜋 (𝑠𝑘 |𝑢 𝑗 )𝑞(𝑢 𝑗 )∑𝑚

𝑗 ′=1
𝜋 (𝑠𝑘 |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )

. (1)

We consider a public signaling scheme, i.e., the seller uses the

same scheme and sends the same information to all buyers. After

receiving signal 𝑠𝑘 , buyer 𝑖 will place their expected valuation as

their bid for the ad:

𝑣𝑖 (𝑠𝑘 ) =
𝑚∑︁
𝑗=1

𝑣𝑖 𝑗𝑞(𝑢 𝑗 |𝑠𝑘 ). (2)

Let Rev(𝜋) be the seller’s expected revenue when the signaling

scheme 𝜋 is used. Then we have:

Rev(𝜋) = E
𝑢 𝑗∼𝑞,𝑠∼𝜋 (𝑠𝑘 |𝑢 𝑗 )

[
𝑐𝑖∗ 𝑗 ·

𝑣𝑖2 (𝑠𝑘 ) (𝑠𝑘 )𝑐𝑖2 𝑗
𝑐𝑖∗ 𝑗

]
= E
𝑢 𝑗∼𝑞,𝑠∼𝜋 (𝑠𝑘 |𝑢 𝑗 )

[𝑣𝑖2 (𝑠𝑘 ) (𝑠𝑘 )𝑐𝑖2 𝑗 ] .

For simplicity, in this paper, we consider the case with 𝑐𝑖 𝑗 =

1,∀𝑖, 𝑗 . Therefore,

Rev(𝜋) = E
𝑢 𝑗∼𝑞,𝑠∼𝜋 (𝑠𝑘 |𝑢 𝑗 )

[𝑣𝑖2 (𝑠𝑘 ) (𝑠𝑘 )]

=
∑︁
𝑗

𝑞(𝑢 𝑗 )
∑︁
𝑘

𝜋 (𝑠𝑘 |𝑢 𝑗 )𝑣𝑖2 (𝑠𝑘 ) (𝑠𝑘 )

=
∑︁
𝑘

𝑣𝑖2 (𝑠𝑘 ) (𝑠𝑘 )
∑︁
𝑗

𝑞(𝑢 𝑗 )𝜋 (𝑠𝑘 |𝑢 𝑗 )

=
∑︁
𝑘

©­«
∑︁
𝑗

𝑞(𝑢 𝑗 |𝑠𝑘 )𝑣𝑖2 (𝑠𝑘 ), 𝑗
ª®¬ ©­«

∑︁
𝑗

𝑞(𝑢 𝑗 )𝜋 (𝑠𝑘 |𝑢 𝑗 )
ª®¬ .

Plugging in Equation (1), we get:

Rev(𝜋) =
∑︁
𝑘

∑︁
𝑗

𝜋 (𝑠𝑘 |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖2 (𝑠𝑘 ), 𝑗 . (3)

It is known that the online ad auction platform can increase their

revenue by strategically revealing information to the buyers [14]. In

fact, using a signaling scheme also helps protect the users’ privacy

as the scheme only reveals partial information about the user.We

utilize the following 𝑓 -divergence to define our privacy metric.

Definition 1 (𝑓 -divergence). Let 𝑃 (𝑥) and 𝑄 (𝑥) be two proba-
bility distributions defined over the same finite set 𝑋 . For any convex

function 𝑓 : (0, +∞) ↦→ R with 𝑓 (1) = 0, the 𝑓 -divergence of 𝑃 from

𝑄 is:

𝐷 𝑓 (𝑃 ∥𝑄) =
∑︁
𝑥∈𝑋

𝑄 (𝑥) 𝑓
(
𝑃 (𝑥)
𝑄 (𝑥)

)
. (4)

Intuitively, if a signaling scheme reveals no information about

the user’s identity, the signal 𝑠𝑘 should be independent of the user

𝑢 𝑗 and the joint distribution of 𝑠𝑘 and 𝑢 𝑗 is the product of the

marginal distributions. Therefore, the 𝑓 -divergence of the joint

distribution from the product distribution can be used to measure

how much information the signal 𝑠𝑘 reveals about 𝑢 𝑗 :

𝐷 𝑓 (𝜋 (𝑢 𝑗 , 𝑠𝑘 )∥𝑞(𝑢 𝑗 )𝑃𝜋 (𝑠𝑘 ))

=
∑︁
𝑗,𝑘

𝑞(𝑢 𝑗 )𝑃𝜋 (𝑠𝑘 ) 𝑓
(
𝜋 (𝑢 𝑗 , 𝑠𝑘 )

𝑞(𝑢 𝑗 )𝑃𝜋 (𝑠𝑘 )

)
, (5)

where 𝜋 (𝑢 𝑗 , 𝑠𝑘 ) = 𝜋 (𝑠𝑘 |𝑢 𝑗 )𝑞(𝑢 𝑗 ) is the joint distribution of send-

ing signal 𝑠𝑘 and the user being 𝑢 𝑗 , and 𝑃𝜋 (𝑠𝑘 ) =
∑

𝑗 𝜋 (𝑢 𝑗 , 𝑠𝑘 ) =∑
𝑗 𝜋 (𝑠𝑘 |𝑢 𝑗 )𝑞(𝑢 𝑗 ) is the marginal distribution of sending signal 𝑠𝑘 .

We use the negated 𝑓 -divergence as our privacy metric since a

smaller divergence means better privacy protection:

Privacy(𝜋) = −
∑︁
𝑗,𝑘

𝑞(𝑢 𝑗 )𝑃𝜋 (𝑠𝑘 ) 𝑓
(
𝜋 (𝑢 𝑗 , 𝑠𝑘 )

𝑞(𝑢 𝑗 )𝑃𝜋 (𝑠𝑘 )

)
.

Note that by setting 𝑓 (𝑥) = 𝑥 log𝑥 , Equation (4) becomes the

Kullback-Leibler divergence, and Equation (5) becomes the mu-

tual information. For ease of presentation, we also define

𝐷 𝑓 (𝜋 ;𝑢 𝑗 , 𝑠𝑘 ) =𝑞(𝑢 𝑗 )𝑃𝜋 (𝑠𝑘 ) 𝑓
(
𝜋 (𝑢 𝑗 , 𝑠𝑘 )

𝑞(𝑢 𝑗 )𝑃𝜋 (𝑠𝑘 )

)
=𝑞(𝑢 𝑗 )𝑃𝜋 (𝑠𝑘 ) 𝑓

(
𝜋 (𝑠𝑘 |𝑢 𝑗 )
𝑃𝜋 (𝑠𝑘 )

)
.

Therefore, we have

Privacy(𝜋) = −
∑︁
𝑗,𝑘

𝐷 𝑓 (𝜋 ;𝑢 𝑗 , 𝑠𝑘 ).

In this paper, we consider maximizing the platform’s revenue

without sacrificing too much privacy. Specifically, we aim to solve

the following mathematical program:

maximize: Rev(𝜋)
subject to: Privacy(𝜋) ≥ 𝛾 (6)

In the above program, 𝛾 is a parameter that controls how much

privacy we allow to sacrifice in exchange for a better revenue.

3 Problem Analysis
In this section, we formulate the problem as a mathematical pro-

gram, and derive structural results of the optimal solution.

It is known that if 𝑓 (𝑥) = 𝑥 log𝑥 , the mutual information (Equa-

tion (5)) is a convex function of the conditional probability distri-

bution 𝜋 (𝑠𝑘 |𝑢 𝑗 ) [28]. In fact, any 𝑓 -divergence shown in Equation

(5) is a convex function of 𝜋 (𝑠𝑘 |𝑢 𝑗 ).

Lemma 1. 𝐷 𝑓 (𝜋 (𝑢 𝑗 , 𝑠𝑘 )∥𝑞(𝑢 𝑗 )𝑃𝜋 (𝑠𝑘 )) is a convex function of the

conditional probability distribution 𝜋 (𝑠𝑘 |𝑢 𝑗 ), and becomes strictly

convex if 𝑓 (𝑥) is strictly convex.
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The proof is standard and thus deferred to the full version.

Lemma 1 immediately implies that Program (6) is a convex op-

timization problem. This result holds for any signaling scheme 𝜋 .

However, directly solving Program (6) is intractable, as the space

of 𝜋 is too large.

Emek et al. [14] show that when 𝛼 = 1, there exists an optimal

signaling scheme that uses at most𝑛(𝑛−1) signals, i.e., |𝑆 | = 𝑛(𝑛−1).
In fact, this result also applies to our setting.

Theorem 1. It is without loss of generality to consider signaling

schemes with 𝑛(𝑛 − 1) signals.

We defer the lengthy proof of Theorem 1 to the full version.

Theorem 1 implies that each signal corresponds to a combination

of the top bidder and the second top bidder. Thus, each signal 𝑠

can actually be indexed by the pair (𝑖1 (𝑠), 𝑖2 (𝑠)). In the Bayesian

persuasion literature, each signal can be interpreted as an “action

recommendation”, while in this paper, there are multiple receivers,

and different signals lead to different expected valuations for each

buyer. In both settings, each signal can be viewed as an “outcome

indicator”. Let 𝑠𝑖,𝑖′ be the signal that leads to buyer 𝑖 having the

highest expected valuation and 𝑖′ having the second highest ex-

pected valuation. With Theorem 1, we can formulate the problem

of maximizing the objective function as the following mathematical

program:

maximize:

𝐽𝛼 (𝜋) = 𝛼 · Rev(𝜋) + (1 − 𝛼) · Privacy(𝜋)
subject to:

𝑚∑︁
𝑗=1

𝜋 (𝑠𝑖,𝑖′ |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖, 𝑗 ≥
𝑚∑︁
𝑗=1

𝜋 (𝑠𝑖,𝑖′ |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖′, 𝑗

∀𝑖, 𝑖′ ≠ 𝑖
𝑚∑︁
𝑗=1

𝜋 (𝑠𝑖,𝑖′ |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖′, 𝑗 ≥
𝑚∑︁
𝑗=1

𝜋 (𝑠𝑖,𝑖′ |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖′′, 𝑗

∀𝑖′′ ≠ 𝑖, 𝑖′∑︁
𝑖,𝑖′≠𝑖

𝜋 (𝑠𝑖,𝑖′ |𝑢 𝑗 ) = 1 ∀𝑗

𝜋 (𝑠𝑖,𝑖′ |𝑢 𝑗 ) ≥ 0 ∀𝑖, 𝑖′ ≠ 𝑖, 𝑗

(7)

Note that in the above program, all constraints are linear except

the first one. We apply Lagrangian relaxation to the first constraint

and obtain a new objective function:

Rev(𝜋) + 𝛽 (Privacy(𝜋) − 𝛾) .
The following result shows that for any𝛾 , there exists an 𝛽 such that

optimizing the relaxed program gives the same optimal solution as

the original one.

Lemma 2. For any 𝛾 , there is an 𝛽 , such that the optimal solution

to the relaxed program is also optimal in the original program.

Due to space limit, the proof of Lemma 2 is also deferred to the

full version.

According to Lemma 2, we can simply focus on the relaxed

program. Note that the objective function in the relaxed program

is Rev(𝜋) + 𝛽Privacy(𝜋) − 𝛽𝛾 . We can safely ignore the last term

as it is constant. Define 𝛼 = 1

1+𝛽 , and the objective function is

equivalent to 𝛼Rev(𝜋) + (1 − 𝛼)Privacy(𝜋), which is a convex

combination of Rev(𝜋) and Privacy(𝜋), and is also convex itself.

We can balance between revenue and privacy by changing 𝛼 in the

interval [0, 1].4 Therefore, from now on, we will only consider the

following program

maximize:

𝛼 · Rev(𝜋) + (1 − 𝛼) · Privacy(𝜋)
subject to:

𝑚∑︁
𝑗=1

𝜋 (𝑠𝑖,𝑖′ |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖, 𝑗 ≥
𝑚∑︁
𝑗=1

𝜋 (𝑠𝑖,𝑖′ |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖′, 𝑗

∀𝑖, 𝑖′ ≠ 𝑖
𝑚∑︁
𝑗=1

𝜋 (𝑠𝑖,𝑖′ |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖′, 𝑗 ≥
𝑚∑︁
𝑗=1

𝜋 (𝑠𝑖,𝑖′ |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖′′, 𝑗

∀𝑖′′ ≠ 𝑖, 𝑖′∑︁
𝑖,𝑖′≠𝑖

𝜋 (𝑠𝑖,𝑖′ |𝑢 𝑗 ) = 1 ∀𝑗

𝜋 (𝑠𝑖,𝑖′ |𝑢 𝑗 ) ≥ 0 ∀𝑖, 𝑖′ ≠ 𝑖, 𝑗

(8)

Let 𝐽𝛼 (𝜋) = 𝛼 · Rev(𝜋) + (1 − 𝛼) · Privacy(𝜋). For ease of

presentation, we also define

𝐽𝛼 (𝜋 ;𝑢 𝑗 , 𝑠𝑘 ) = 𝛼𝜋 (𝑠𝑘 |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖2 (𝑠𝑘 ), 𝑗 − (1 − 𝛼)𝐷 𝑓 (𝜋 ;𝑢 𝑗 , 𝑠𝑘 ).
Therefore, we have 𝐽𝛼 (𝜋) =

∑
𝑗,𝑘 𝐽𝛼 (𝜋 ;𝑢 𝑗 , 𝑠𝑘 ).

Theorem 2. Removing the second constraint does not affect the

optimal objective value of Program (8).

The proof of Theorem 2 is also deferred to the full version. With

Theorem 2, we can safely remove the second constraint and obtain

the following program:

maximize:

𝐽𝛼 (𝜋) = 𝛼 · Rev(𝜋) + (1 − 𝛼) · Privacy(𝜋)
subject to:

𝑚∑︁
𝑗=1

𝜋 (𝑠𝑖,𝑖′ |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖, 𝑗 ≥
𝑚∑︁
𝑗=1

𝜋 (𝑠𝑖,𝑖′ |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖′, 𝑗

∀𝑖, 𝑖′ ≠ 𝑖∑︁
𝑖,𝑖′≠𝑖

𝜋 (𝑠𝑖,𝑖′ |𝑢 𝑗 ) = 1 ∀𝑗

𝜋 (𝑠𝑖,𝑖′ |𝑢 𝑗 ) ≥ 0 ∀𝑖, 𝑖′ ≠ 𝑖, 𝑗

(9)

Now we derive structural results of Program (9).

Lemma 3. For any bidder 𝑖, 𝑖′, 𝑖′′, and user𝑢 𝑗 , if 𝑣𝑖′′, 𝑗 > 𝑣𝑖, 𝑗 > 𝑣𝑖′, 𝑗 ,
then the optimal scheme 𝜋∗ satisfies 𝜋∗ (𝑠𝑖′′,𝑖 |𝑢 𝑗 ) ≥ 𝜋∗ (𝑠𝑖′,𝑖 |𝑢 𝑗 ).

The proof of Lemma 3 is also deferred to the full version. Lemma

3 reveals relative monotonicity relations between valuations and

signaling schemes, i.e., for any buyer 𝑖 and user 𝑢 𝑗 , if there are both

larger-valued buyers and lower-valued buyers, then in the optimal

scheme, when user 𝑢 𝑗 appears, a signal that ranks a larger-valued

buyer as the top buyer is more likely to be sent than a signal that

ranks a lower-valued buyer as the top buyer.

Lemma 4. Let 𝜋∗ be the optimal scheme. For any bidder 𝑖, 𝑖′, 𝑖′′,
and user 𝑢 𝑗 , if 𝜋

∗ (𝑠𝑖′′,𝑖 |𝑢 𝑗 ) > 𝜋∗ (𝑠𝑖′,𝑖 |𝑢 𝑗 ), then we have either∑︁
𝑗 ′
𝜋∗ (𝑠𝑖′,𝑖 |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )𝑣𝑖′, 𝑗 ′ =

∑︁
𝑗 ′
𝜋∗ (𝑠𝑖′,𝑖 |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )𝑣𝑖, 𝑗 ′

𝑣𝑖′, 𝑗 < 𝑣𝑖, 𝑗 ,

4
By definition, 𝛼 cannot be 0. However, we can still set 𝛼 to include the case where

the platform does not have privacy constraints.
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or ∑︁
𝑗 ′
𝜋∗ (𝑠𝑖′′,𝑖 |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )𝑣𝑖′′, 𝑗 ′ =

∑︁
𝑗 ′
𝜋∗ (𝑠𝑖′′,𝑖 |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )𝑣𝑖, 𝑗 ′

𝑣𝑖′′, 𝑗 > 𝑣𝑖, 𝑗 .

The proof of Lemma 4 is deferred to the full version. Lemma 4

shows that, among all the signals where bidder 𝑖 ranks second, if

two signals have different conditional probabilities, then bidder 𝑖’s

bid is the same as the top bidder under at least one of the signals.

4 Theoretic Guarantees
In this section, we analyze the performance of Program (9). Specifi-

cally, we seek to understand how each performance metric is com-

pared to their best possible value, i.e., the approximation of each

performance metric. However, our privacy metric is a negated 𝑓 -

divergence, which is know to be non-positive. Therefore, we analyze

how much the solution to Program (9) improves each performance

metric instead.

Let 𝑃 (𝛼) be the above program parameterized by 𝛼 , and 𝜋𝛼 the

optimal solution to 𝑃 (𝛼). Different 𝛼 ’s leads to a different solution.

Since 𝑃 (𝛼) is a convex program for any 𝛼 , optimizing 𝑃 (𝛼) gives a
Pareto optimal solution. (i.e., there exists no signaling scheme that

leads to both a larger revenue and a larger privacy).

Specifically, 𝜋1 and 𝜋0 are the signaling schemes that maximizes

only Rev(𝜋) and Privacy(𝜋), respectively5.Note that 𝜋0 reveals no

information at all (e.g., always sending the same signal). The prob-

lem becomes uninteresting if Rev(𝜋0) = Rev(𝜋1) or Privacy(𝜋0) =
Privacy(𝜋1), since in these cases, simply using 𝜋0 or 𝜋1 simulta-

neously maximizes revenue and privacy. Therefore, from now on,

we assume Rev(𝜋1) > Rev(𝜋0) and Privacy(𝜋0) > Privacy(𝜋1).
Intuitively, by increasing 𝛼 , the objective function of program 𝑃 (𝛼)
focuses more on revenue but less on privacy, and thus leads to

higher revenue and lower privacy.

Lemma 5. Rev(𝜋𝛼 ) is an increasing function of𝛼 , and Privacy(𝜋𝛼 )
is a decreasing function of 𝛼 .

The proof is straightforward and thus deferred to the full ver-

sion. For ease of presentation, we write Rev𝑀 = Rev(𝜋1) and
Privacy𝑀 = Privacy(𝜋0) to be the largest possible revenue and

privacy value achieved by any signaling scheme. We also define

Rev𝑏𝑎𝑠𝑒 = Rev(𝜋0) and Privacy𝑏𝑎𝑠𝑒 = Privacy(𝜋1) to be the

revenue and privacy achieved when optimizing only the other per-

formance metric.

The following result shows that we can achieve a certain fraction

of the best revenue and privacy gain by simply tuning 𝛼

Theorem 3. For any𝛼 , there exists 𝜆 ∈ [0, 1] such that 𝜋𝛼 achieves

𝜆 fraction of the optimal revenue gain and 1−𝜆 fraction of the optimal

privacy gain, i.e.,

Rev(𝜋𝛼 ) − Rev𝑏𝑎𝑠𝑒

Rev𝑀 − Rev𝑏𝑎𝑠𝑒

≥ 𝜆, (10)

Privacy(𝜋𝛼 ) − Privacy𝑏𝑎𝑠𝑒

Privacy𝑀 − Privacy𝑏𝑎𝑠𝑒

≥ 1 − 𝜆. (11)

5
There may be multiple schemes that maximize Rev(𝜋 ) or Privacy(𝜋 ) , We choose 𝜋1

(𝜋0) to be the one with the largest privacy (revenue) among all schemes that maximize

Rev(𝜋 ) (Privacy(𝜋 )). However, all our theoretic results apply to any choice of 𝜋1

and 𝜋0 .

Furthermore, for any 𝜆 ∈ [0, 1], there exists 𝛼 ∈ [0, 1], such that

𝜋𝛼 satisfies the above inequalities.

The proof of Theorem 3 is deferred to the full version. Theorem

3 shows that by tuning the parameter 𝛼 , we can easily balance

between optimizing different objectives.

Let 𝑉 = (𝑣𝑖 𝑗 )𝑖, 𝑗 be the valuation profile of all buyers. Define

𝑑𝑖,𝑖′ (𝑉 ) = max𝑗 |𝑣𝑖 𝑗−𝑣𝑖′ 𝑗 | to be themaximumvaluation discrepancy

between buyer 𝑖 and 𝑖′ among all users. Define the “diameter” of 𝑉

to be 𝑑 (𝑉 ) = max𝑖,𝑖′ 𝑑𝑖,𝑖′ (𝑉 ), i.e., the maximum 𝑑𝑖,𝑖′ (𝑉 ) among all

buyer pairs. In other words, if we define 𝑣𝑖 = (𝑣𝑖1, 𝑣𝑖2, . . . , 𝑣𝑖𝑚) to
be the valuation profile of buyer 𝑖 , then 𝑑 (𝑉 ) = max𝑖,𝑖′ ∥𝑣𝑖 − 𝑣𝑖′ ∥∞
is the largest distance among all vectors 𝑣𝑖 , where the distance is

induced by ∞-norm. Then we have the following result:

Theorem 4. 𝜋0 satisfies Rev(𝜋0) ≥ Rev𝑀 − 𝑑 (𝑉 ).

The proof is straightforward and thus deferred to the full ver-

sion. Theorem 4 shows that if the buyers’ valuations align well

(𝑑 (𝑉 ) is small) then there is enough competition and revealing no

information almost simultaneously maximizes privacy and revenue.

In fact, it is often the case in real-world applications since similar

advertisers usually target similar users and thus place similar bids.

Another simple yet interesting observation is that compared

with the standard industry practice where the platform reveals all

information to the buyers to help them better evaluate the ads, re-

vealing only partial information can actually improve both revenue

and privacy simultaneously.

5 Experiments
In this section, we conduct experiments on both synthetic and

real data sets and report the results of our methodWe choose to

experiment with the following 𝑓 -divergence:

• Kullback-Leibler divergence: 𝑓 (𝑥) = 𝑥 log𝑥 ;

• Jensen-Shannon divergence: 𝑓 (𝑥) = 𝑥 log
2𝑥
𝑥+1

+ log
2

𝑥+1
;

• Total variation divergence: 𝑓 (𝑥) = 1

2
|𝑥 − 1|.

Note that when the Kullback-Leibler divergence is used, 𝐷 𝑓 (·) actu-
ally becomes the mutual information. All the above 𝑓 -divergences

are widely used in the literature as measures of information.

5.1 Independent Valuations
We first conduct experiments in the setting where the bidders’

values are independent. This setting is standard in most existing

papers on auction design.

5.1.1 Synthetic Data Set. In the synthetic data set, the number of

bidders is set to 5 (𝑛 = 5), and the number of users is set to 10

(𝑚 = 10) and 20 (𝑚 = 20), respectively. The results with𝑚 = 20

show similar patterns to those with𝑚 = 10. Due to space limit, these

results are deferred to the full version. We generate 50 different

problem instances for both 𝑚 = 10 and 𝑚 = 20. And for each

problem instance, 𝑣𝑖 𝑗 is drawn independently from the uniform

distribution 𝑈 [0, 1], for all 𝑖 and 𝑗 . The distribution 𝑞(𝑢 𝑗 ) is also
randomly generated. We choose 500 values uniformly from the

interval [0, 1] and use these values as 𝛼 in Program (9). All reported

results are averaged over these 50 problem instances. All the curves

in the figures are Pareto frontiers of the corresponding settings. To
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(a) KL divergence (b) JS divergence (c) TV divergence

Figure 1: Performancewith𝑚 = 10, 𝑛 = 5 on the synthetic data set. The solid and dashed lines represent the curves for revenue and
welfare. The points indicated by diamond markers and round markers correspond to the results by revealing full information
and no information (𝜋0), respectively.

(a) KL divergence (b) JS divergence (c) TV divergence

Figure 2: Performance with𝑚 = 10, 𝑛 = 5 on the iPinYou data set. The solid and dashed lines represent the curves for revenue and
welfare. The points indicated by diamond markers and round markers correspond to the results by revealing full information
and no information (𝜋0), respectively.

(a) KL divergence (b) JS divergence (c) TV divergence

Figure 3: Performance with𝑚 = 100, 𝑛 = 10 Kuaishou data set. The solid and dashed lines represent the curves for revenue and
welfare. The points indicated by diamond markers and round markers correspond to the results by revealing full information
and no information (𝜋0), respectively.

solve Program (9), we use the cvxpy package [1, 10] and set the

solver to be SCS (Splitting Conic Solver [27]).

The results of the first experiment are shown in Figure 1, where

we also calculate the welfare in our experiments. The expected
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(a) KL divergence (b) JS divergence (c) TV divergence

Figure 4: Performance with𝑚 = 10 and five different weight coefficients on the synthetic data set.

(a) KL divergence (b) JS divergence (c) TV divergence

Figure 5: Performance with𝑚 = 10 and five different weight coefficients on the iPinYou data set.

(a) KL divergence (b) JS divergence (c) TV divergence

Figure 6: Performance with𝑚 = 100, 𝑛 = 10 and five different weight coefficients on Kuaishou data set.

welfare based scheme 𝜋 is:

Wel(𝜋) =
∑︁
𝑘

∑︁
𝑗

𝜋 (𝑠𝑘 |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖1 (𝑠𝑘 ), 𝑗 .

The welfare curve can be derived by solving programs obtained by

replacing the objective in Program (9) with the above function.

All the 3 figures indicate that compared with the case of revealing

full information (sending the identity of 𝑢 𝑗 directly to the bidders) ,

using a scheme 𝜋1 can indeed improve both revenue and privacy by

a large margin. In addition, to achieve the same revenue as revealing

full information, we can in fact use a scheme that performs much

better in terms of privacy protection to achieve the same revenue.

Both the welfare curve and the revenue curve are almost flat

when privacy is low, which corresponds to cases with large 𝛼 ’s. This

means we can significantly improve privacy by not sacrificing too

much revenue andwelfare. Comparedwith the revenue-maximizing
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scheme (𝜋1) and welfare-maximizing scheme (revealing full infor-

mation), revealing no information (using 𝜋0) can achieve 79% and

77% of the optimal revenue and optimal welfare, respectively.

In all the 3 plots in Figure 1, the leftmost point of the dashed

curve can be obtained by maximizing privacy among all schemes

that maximize welfare. Therefore, we can conclude that the revenue-

maximizing scheme better protects the users’ privacy compared to

any welfare-maximizing scheme.

5.1.2 Real Data Set. Wealso conduct experiments using the iPinYou

data set [19]. This data set is released by a demand-side platform

that places bids on ad auction platforms on behalf of the advertisers.

The data set includes 3 auction seasons (24 days) of data with 78

million records. Each bid record contains information on bidder

id, bid, paying pricing, etc. There are 6 different ad platforms in-

cluding Google, Baidu, Alibaba and Tencent. We use data of the

second season in our experiment as the data of this season includes

user characteristics such as hobbies and buying preferences. We

extracted 533,184 users and 5 bidders from the data set. However,

the bid records are set to be very high only to collect data, and thus

cannot be used. But the paying prices are the true bids of other

bidders, and we use these prices as bids in our experiments.

To simplify our experiment process, we use the 𝐾-means al-

gorithm to cluster the users into 10 (𝑚 = 10) and 20 (𝑚 = 20)

meta-users. We also defer the results for𝑚 = 20 to the full version.

For each meta-user and each bidder, we fit the bids to a lognormal

distribution. The probability 𝑞(𝑢 𝑗 ) is also calculated based on the

number of records in the data set.

As shown in Figure 2, the results for this experiment show similar

patterns as those for the first experiment. In this experiment, the

revenue and welfare of revealing no information achieve 82% of

the optimal revenue and 72% of the optimal welfare. Interestingly,

the revenue of revealing full information is even smaller than that

of revealing no information under all privacy measures, which

indicates that using any 𝛼 leads to a scheme that simultaneously

improves revenue and privacy.

The second data set is from Kuaishou, a major short-form video

and live-stream company in China. We extract data from a week’s

worth of ad auctions, in which we select 10 advertisers (𝑛=10)

to serve as bidders. We then categorize the platform’s users into

100 different groups (𝑚=100) based on characteristics such as age,

gender, and interests. We consider the average bid made by each

advertiser for the same type of user within a week as 𝑣𝑖 𝑗 .

As illustrated in Figure 3, the results of this experiment align

closely with those of our first and second experiments. The revenue

and welfare of revealing no information reached 75% of the optimal

revenue and 56% of the optimal welfare. Interestingly, we also

discovered that the revenue of revealing full information is less than

the revenue of revealing no information. This result is consistent

with the conclusions drawn from the iPinYou data set.

5.2 Correlated Valuations
In this section, we report the results of experiments conducted in

the setting with correlated valuations. This setting is also called

the “inter-dependent valuation” setting in the literature. The inter-

dependence among the bidders’ valuations captures the cases where

similar bidders have similar preferences over the users. For example,

bidders from the same industry may target a similar set of users

and place similar bids when a user arrives.

We re-conduct all the experiments in Section 5.1 with the same

parameters except the joint valuation distribution. We posit that

a bidder’s bid can be attributed to two components: the bidder’s

intrinsic valuation of the user and an aggregate of interrelated

valuations among bidders. This can be expressed as the bidder’s new

bid, denoted as 𝑣𝑖, 𝑗 = (1−𝛾)𝑣0

𝑖, 𝑗
+𝛾𝑣 𝑗 , where 𝑣0

𝑖, 𝑗
is an independent

random variable that follows the same distribution as in Section 5.1,

and 𝑣 𝑗 =
1

𝑛

∑𝑛
𝑖 𝑣

0

𝑖, 𝑗
is the averaged valuation of all bidders, which is

the same among all bidders, and 𝛾 serves as the weight coefficient

that control the degree of correlation. Clearly, 𝛾 = 0 leads to the

same setting in Section 5.1. In our experiments, we explored several

different weight coefficients: 𝛾 = 0.2, 𝛾 = 0.4, 𝛾 = 0.6, 𝛾 = 0.8.

Similar to Section 5.1, we evaluated the relation between welfare

and privacy, as well as revenue and privacy, under each weight

coefficient. We report results for𝑚 = 10 of the first two experiments

in Figure 4 and 5, and the results for the Kuaishou data set in Figure

6. The results for𝑚 = 20 are deferred to the full version.

All experimental results show that when bidders’ bids are corre-

lated, our previous theoretic results still hold. At the same time, as 𝛾

increases, both revenue and welfare decrease. Another observation

revealed from Figure 4, 5 and 6 is that a higher 𝛾 leads to smaller

revenue gain and welfare gain. This means the more correlated

valuations the bidders have, the less revenue gain and welfare gain

can be extracted from revealing partial information with a signaling

scheme. This aligns with our intuition and confirms our theoretic

result Theorem 4. Consider the extreme case where the valuations

are fully correlated, e.g., all bidders have the same valuation for the

same user (𝛾 = 1). In this case, no matter how much information

the platform reveals to the bidders, all the bidders have the same

expected valuation, which leads to the same revenue and welfare

(no revenue and welfare gain).

6 Conclusion
In this paper, we study how to apply signaling scheme to help

protect the privacy of the users in online ad auctions. We use an

𝑓 -divergence to measure how much information is leaked to the ad-

vertiser. We show that this problem can be formulated as a convex

optimization problem and thus can be efficiently solved. Our theo-

retic results show that we can easily balance between revenue and

privacy by simply tuning a single parameter. We also prove that the

revenue of revealing no information can be bounded by how well

the advertisers’ valuations are aligned. This means if the market is

competitive enough, using a signaling scheme can improve both

revenue and privacy, which is also confirmed by our experiment

results. Moreover, our experiment results also show that compared

with the revenue maximizing or welfare maximizing scheme, we

can set an appropriate parameter 𝛼 to significantly improve privacy

without sacrificing too much revenue and welfare.
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Appendix
A Omitted Proofs
A.1 Proof of Lemma 1

Proof. For any conditional distributions 𝜋 (𝑠𝑘 |𝑢 𝑗 ) and 𝜋 ′ (𝑠𝑘 |𝑢 𝑗 ),
define 𝜋 (𝑠𝑘 |𝑢 𝑗 ) = 1

2
[𝜋 (𝑠𝑘 |𝑢 𝑗 ) + 𝜋 ′ (𝑠𝑘 |𝑢 𝑗 )].

Let 𝑃𝜋 (𝑠𝑘 ) =
∑

𝑗 𝜋 (𝑠𝑘 |𝑢 𝑗 )𝑞(𝑢 𝑗 ). It suffices to show that for

any 𝑗 and 𝑘 , 𝐷 𝑓 (𝜋 ;𝑢 𝑗 , 𝑠𝑘 ) is a convex function of 𝜋 (𝑠𝑘 |𝑢 𝑗 ), since
𝐷 𝑓 (𝜋 (𝑢 𝑗 , 𝑠𝑘 )∥𝑞(𝑢 𝑗 )𝑃 (𝑠𝑘 )) =

∑
𝑖, 𝑗 𝐷 𝑓 (𝜋 ;𝑢 𝑗 , 𝑠𝑘 ) is a linear function

of 𝐷 𝑓 (𝜋 ;𝑢 𝑗 , 𝑠𝑘 ).
𝑃𝜋 (𝑠𝑘 ) is a linear function of 𝜋 (𝑠𝑘 |𝑢 𝑗 ), Thus we have 𝑃𝜋 (𝑠𝑘 ) =

1

2
𝑃𝜋 (𝑠𝑘 ) + 1

2
𝑃𝜋 ′ (𝑠𝑘 ). Therefore,

1

2

[
𝐷 𝑓 (𝜋 ;𝑢 𝑗 , 𝑠𝑘 ) + 𝐷 𝑓 (𝜋 ′;𝑢 𝑗 , 𝑠𝑘 )

]
=

1

2

𝑃𝜋 (𝑠𝑘 ) 𝑓
(
𝜋 (𝑠𝑘 |𝑢 𝑗 )
𝑃𝜋 (𝑠𝑘 )

)
+ 1

2

𝑃𝜋 ′ (𝑠𝑘 ) 𝑓
(
𝜋 ′ (𝑠𝑘 |𝑢 𝑗 )
𝑃𝜋 ′ (𝑠𝑘 )

)
=𝑃𝜋 (𝑠𝑘 )

[
1

2
𝑃𝜋 (𝑠𝑘 )
𝑃𝜋 (𝑠𝑘 )

𝑓

(
𝜋 (𝑠𝑘 |𝑢 𝑗 )
𝑃𝜋 (𝑠𝑘 )

)
+

1

2
𝑃𝜋 ′ (𝑠𝑘 )
𝑃𝜋 (𝑠𝑘 )

𝑓

(
𝜋 ′ (𝑠𝑘 |𝑢 𝑗 )
𝑃𝜋 ′ (𝑠𝑘 )

) ]
≥𝑃𝜋 (𝑠𝑘 ) 𝑓

(
1

2
𝑃𝜋 (𝑠𝑘 )
𝑃𝜋 (𝑠𝑘 )

𝜋 (𝑠𝑘 |𝑢 𝑗 )
𝑃𝜋 (𝑠𝑘 )

+
1

2
𝑃𝜋 ′ (𝑠𝑘 )
𝑃𝜋 (𝑠𝑘 )

𝜋 ′ (𝑠𝑘 |𝑢 𝑗 )
𝑃𝜋 ′ (𝑠𝑘 )

)
=𝑃𝜋 (𝑠𝑘 ) 𝑓

(
1

2
𝜋 (𝑠𝑘 |𝑢 𝑗 )
𝑃𝜋 (𝑠𝑘 )

+
1

2
𝜋 ′ (𝑠𝑘 |𝑢 𝑗 )
𝑃𝜋 (𝑠𝑘 )

)
=𝑃𝜋 (𝑠𝑘 ) 𝑓

(
𝜋 (𝑠𝑘 |𝑢 𝑗 )
𝑃𝜋 (𝑠𝑘 )

)
=𝐷 𝑓 (𝜋 ;𝑢 𝑗 , 𝑠𝑘 ),

where the inequality is due to the Jensen’s inequality.

And if 𝑓 (𝑥) is strictly convex, the above inequality also becomes

strict, making 𝐷 𝑓 (𝜋 (𝑢 𝑗 , 𝑠𝑘 )∥𝑞(𝑢 𝑗 )𝑃𝜋 (𝑠𝑘 )) a strictly convex func-

tion. □

A.2 Proof of Theorem 1
Proof. We prove the theorem by showing that for any signaling

scheme with strictly more than 𝑛(𝑛 − 1) signals, we can construct

a new signaling scheme with 𝑛(𝑛 − 1) signals that achieve a higher
objective value.

For any signal 𝑠 , it induces an expected valuation 𝑣𝑖 (𝑠) for buyer
𝑖 . Define

𝑖1 (𝑠) = arg max

𝑖∈𝑁
𝑣𝑖 (𝑠),

𝑖2 (𝑠) = arg max

𝑖∈𝑁 \{𝑖1 (𝑠 ) }
𝑣𝑖 (𝑠)

to be the buyers with the highest and second highest expected

valuations. For any signaling scheme 𝜋 with strictly more than

𝑛(𝑛 − 1) signals, there must exists at least two signals 𝑠𝑘1
and 𝑠𝑘2

with 𝑖1 (𝑠𝑘1
) = 𝑖1 (𝑠𝑘2

) and 𝑖2 (𝑠𝑘1
) = 𝑖2 (𝑠𝑘2

), since there are only

𝑛(𝑛 − 1) different combinations of the top two buyers. Now we

construct a new signaling scheme 𝑆 ′ and 𝜋 ′ as follows:

𝑆 ′ = 𝑆 \ {𝑠𝑘1
, 𝑠𝑘2

} ∪ {𝑠𝑘 ′ },

𝜋 ′ (𝑠 |𝑢 𝑗 ) =
{
𝜋 (𝑠 |𝑢 𝑗 ) if 𝑠 ∈ 𝑆 \ {𝑠𝑘1

, 𝑠𝑘2
}

𝜋 (𝑠𝑘1
|𝑢 𝑗 ) + 𝜋 (𝑠𝑘2

|𝑢 𝑗 ) if 𝑠 = 𝑠𝑘 ′
.

Simply put, in the new signaling scheme, we merge signals 𝑠𝑘1
and

𝑠𝑘2
to a single signal 𝑠𝑘 ′ , and let the seller send signal 𝑠𝑘 ′ whenever

they send 𝑠𝑘1
or 𝑠𝑘2

in the original scheme.

We first show that for the combined signal 𝑠𝑘 ′ , the top two buyers

are the same as those for the original signals 𝑠𝑘1
and 𝑠𝑘2

. In the

original scheme, for any signal 𝑠 ∈ 𝑆 , we have
𝑣𝑖1 (𝑠 ) (𝑠) ≥ 𝑣𝑖2 (𝑠 ) (𝑠),

𝑣𝑖2 (𝑠 ) (𝑠) ≥ 𝑣𝑖′ (𝑠),∀𝑖 ≠ 𝑖1 (𝑠), 𝑖2 (𝑠) .
Combining with Equation (1) and (2) yields:

𝑚∑︁
𝑗=1

𝜋 (𝑠 |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖1 (𝑠 ), 𝑗 ≥
𝑚∑︁
𝑗=1

𝜋 (𝑠 |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖2 (𝑠 ), 𝑗 . (12)

Also, for any 𝑖 ≠ 𝑖1 (𝑠), 𝑖2 (𝑠):
𝑚∑︁
𝑗=1

𝜋 (𝑠 |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖2 (𝑠 ), 𝑗 ≥
𝑚∑︁
𝑗=1

𝜋 (𝑠 |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖, 𝑗 . (13)

In the new scheme, for any 𝑠 ∈ 𝑆 \ {𝑠𝑘1
, 𝑠𝑘2

}, we have:

𝑞(𝑢 𝑗 |𝑠) =
𝜋 ′ (𝑠 |𝑢 𝑗 )𝑞(𝑢 𝑗 )∑
𝑗 ′ 𝜋

′ (𝑠 |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )
=

𝜋 (𝑠 |𝑢 𝑗 )𝑞(𝑢 𝑗 )∑
𝑗 ′ 𝜋 (𝑠 |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )

,

which is the same as the posterior belief in the original scheme.

Thus the order of the buyers are also the same as in the original

scheme. If 𝑠 = 𝑠𝑘 ′ , we have

𝑞(𝑢 𝑗 |𝑠𝑘 ′ ) =
𝜋 ′ (𝑠𝑘 ′ |𝑢 𝑗 )𝑞(𝑢 𝑗 )∑
𝑗 ′ 𝜋

′ (𝑠𝑘 ′ |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )

=
[𝜋 (𝑠𝑘1

|𝑢 𝑗 ) + 𝜋 (𝑠𝑘2
|𝑢 𝑗 )]𝑞(𝑢 𝑗 )∑

𝑗 ′ 𝜋
′ (𝑠𝑘 ′ |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )

.

Recall that 𝑖1 (𝑠𝑘1
) = 𝑖1 (𝑠𝑘2

) and 𝑖2 (𝑠𝑘1
) = 𝑖2 (𝑠𝑘2

). Writing Equation

(12) for both 𝑠𝑘1
and 𝑠𝑘2

, adding them together gives:∑︁
𝑗

[𝜋 (𝑠𝑘1
|𝑢 𝑗 ) + 𝜋 (𝑠𝑘2

|𝑢 𝑗 )]𝑞(𝑢 𝑗 )∑
𝑗 ′ 𝜋

′ (𝑠𝑘 ′ |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )
𝑣𝑖1 (𝑠𝑘

1
), 𝑗

≥
∑︁
𝑗

[𝜋 (𝑠𝑘1
|𝑢 𝑗 ) + 𝜋 (𝑠𝑘2

|𝑢 𝑗 )]𝑞(𝑢 𝑗 )∑
𝑗 ′ 𝜋

′ (𝑠𝑘 ′ |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )
𝑣𝑖2 (𝑠𝑘

1
), 𝑗 .

Similarly, for any 𝑖 ≠ 𝑖1 (𝑠𝑘1
), 𝑖2 (𝑠𝑘1

), we have:∑︁
𝑗

[𝜋 (𝑠𝑘1
|𝑢 𝑗 ) + 𝜋 (𝑠𝑘2

|𝑢 𝑗 )]𝑞(𝑢 𝑗 )∑
𝑗 ′ 𝜋

′ (𝑠∗ |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )
𝑣𝑖2 (𝑠𝑘

1
), 𝑗

≥
∑︁
𝑗

[𝜋 (𝑠𝑘1
|𝑢 𝑗 ) + 𝜋 (𝑠𝑘2

|𝑢 𝑗 )]𝑞(𝑢 𝑗 )∑
𝑗 ′ 𝜋

′ (𝑠𝑘 ′ |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )
𝑣𝑖, 𝑗 .

The above equations mean that when signal 𝑠𝑘 ′ is sent, buyer 𝑖1 (𝑠𝑘1
)

(or 𝑖1 (𝑠𝑘2
)) and 𝑖2 (𝑠𝑘1

) (or 𝑖2 (𝑠𝑘2
)) are still the top two buyers, i.e.,

𝑖1 (𝑠𝑘1
) = 𝑖1 (𝑠𝑘2

) = 𝑖1 (𝑠𝑘 ′ ) and 𝑖2 (𝑠𝑘1
) = 𝑖2 (𝑠𝑘2

) = 𝑖2 (𝑠𝑘 ′ ).
Next, we show that the new scheme 𝑆 ′ and 𝜋 ′ achieves a higher

objective value. The intuition is that the new scheme gives the seller

the same expected revenue, while performs better in protecting the

users’ privacy since the new scheme reveals less information.

For any 𝑠𝑘 ∈ 𝑆\{𝑠𝑘1
, 𝑠𝑘2

}, since the top two buyers are the same in

both schemes and 𝜋 ′ (𝑠𝑘 |𝑢 𝑗 ) = 𝜋 (𝑠𝑘 |𝑢 𝑗 ), we have 𝐽
𝑗𝑘
𝛼 (𝜋 ′) = 𝐽 𝑗𝑘𝛼 (𝜋).
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For 𝑠𝑘 ′ , combining signal 𝑠𝑘1
and 𝑠𝑘2

does not change the first term

since for any 𝑢 𝑗 ,

𝑞(𝑢 𝑗 )𝜋 ′ (𝑠𝑘 ′ |𝑢 𝑗 )𝑣𝑖2 (𝑠𝑘′ ), 𝑗
=𝑞(𝑢 𝑗 ) [𝜋 (𝑠𝑘1

|𝑢 𝑗 ) + 𝜋 (𝑠𝑘2
|𝑢 𝑗 )]𝑣𝑖2 (𝑠𝑘′ ), 𝑗

=𝑞(𝑢 𝑗 )𝜋 (𝑠𝑘1
|𝑢 𝑗 )𝑣𝑖2 (𝑠𝑘

1
), 𝑗 + 𝑞(𝑢 𝑗 )𝜋 (𝑠𝑘2

|𝑢 𝑗 )𝑣𝑖2 (𝑠𝑘
2
), 𝑗 . (14)

As for the second term, we have:

𝐷 𝑓 (𝜋 ;𝑢 𝑗 , 𝑠𝑘1
) + 𝐷 𝑓 (𝜋 ;𝑢 𝑗 , 𝑠𝑘2

)

=𝑞(𝑢 𝑗 )𝑃𝜋 (𝑠𝑘1
) 𝑓

(
𝜋 (𝑠𝑘1

|𝑢 𝑗 )
𝑃𝜋 (𝑠𝑘1

)

)
+ 𝑃𝜋 (𝑠𝑘2

) 𝑓
(
𝜋 (𝑠𝑘2

|𝑢 𝑗 )
𝑃𝜋 (𝑠𝑘2

)

)
=𝑞(𝑢 𝑗 )𝑃𝜋 ′ (𝑠𝑘 ′ )

[
𝑃𝜋 (𝑠𝑘1

)
𝑃𝜋 ′ (𝑠𝑘 ′ ) 𝑓

(
𝜋 (𝑠𝑘1

|𝑢 𝑗 )
𝑃𝜋 (𝑠𝑘1

)

)
+
𝑃𝜋 (𝑠𝑘2

)
𝑃𝜋 ′ (𝑠𝑘 ′ ) 𝑓

(
𝜋 (𝑠𝑘2

|𝑢 𝑗 )
𝑃𝜋 (𝑠𝑘2

)

)]
≥𝑞(𝑢 𝑗 )𝑃𝜋 ′ (𝑠𝑘 ′ ) 𝑓

(
𝑃𝜋 (𝑠𝑘1

)
𝑃𝜋 ′ (𝑠𝑘 ′ )

𝜋 (𝑠𝑘1
|𝑢 𝑗 )

𝑃𝜋 (𝑠𝑘1
)

+
𝑃𝜋 (𝑠𝑘2

)
𝑃𝜋 ′ (𝑠𝑘 ′ )

𝜋 (𝑠𝑘2
|𝑢 𝑗 )

𝑃𝜋 (𝑠𝑘2
)

)
=𝑞(𝑢 𝑗 )𝑃𝜋 ′ (𝑠𝑘 ′ ) 𝑓

(
𝜋 (𝑠𝑘1

|𝑢 𝑗 )
𝑃𝜋 ′ (𝑠𝑘 ′ ) +

𝜋 (𝑠𝑘2
|𝑢 𝑗 )

𝑃𝜋 ′ (𝑠𝑘 ′ )

)
=𝑞(𝑢 𝑗 )𝑃𝜋 ′ (𝑠𝑘 ′ ) 𝑓

(
𝜋 (𝑠𝑘 ′ |𝑢 𝑗 )
𝑃𝜋 ′ (𝑠𝑘 ′ )

)
=𝐷 𝑓 (𝜋 ′;𝑢 𝑗 , 𝑠𝑘 ′ ),

where the inequality is due to the Jensen’s inequality. Combining

the above equations gives 𝐽𝛼 (𝜋 ;𝑢 𝑗 , 𝑠𝑘1
)+𝐽𝛼 (𝜋 ;𝑢 𝑗 , 𝑠𝑘2

) ≤ 𝐽𝛼 (𝜋 ′;𝑢 𝑗 , 𝑠𝑘 ′ ).
Therefore,

𝐽𝛼 (𝜋) =
∑︁
𝑗

[
𝐽𝛼 (𝜋 ;𝑢 𝑗 , 𝑠𝑘1

) + 𝐽𝛼 (𝜋 ;𝑢 𝑗 , 𝑠𝑘2
)
]

+
∑︁
𝑗


∑︁

𝑘≠𝑘1,𝑘2

𝐽𝛼 (𝜋 ;𝑢 𝑗 , 𝑠𝑘 )


≤
∑︁
𝑗

[
𝐽𝛼 (𝜋 ′;𝑢 𝑗 , 𝑠𝑘 ′ ) +

∑︁
𝑘≠𝑘 ′

𝐽𝛼 (𝜋 ′;𝑢 𝑗 , 𝑠𝑘 )
]

=
∑︁
𝑗,𝑘

𝐽𝛼 (𝜋 ′;𝑢 𝑗 , 𝑠𝑘 )

=𝐽𝛼 (𝜋 ′) .
□

A.3 Proof of Lemma 2
Proof. Denote by D the dual program of Program 6. Let 𝜋∗

be the optimal solution to the original program. Let 𝜂 be the dual

variable associated to the first constraint in D, and 𝜂∗ be the value

in the optimal solution to D. We set 𝛽 = 𝜂∗. Since the original

program is convex, we have the complementary slackness condition:

𝜂∗ (Privacy(𝜋∗) − 𝛾) = 0. This means that in the relaxed program,

setting 𝜋 = 𝜋∗ achieves the same objective value as in the original

one, as the second term becomes 0. However, it is known that the

optimal objective of the relaxed program provides an upper bound

to the original one, which implies that 𝜋∗ is already optimal in the

relaxed program. Therefore, solving the relaxed program also gives

the same optimal solution as in the original one. □

A.4 Proof of Theorem 2
Proof. Let 𝜋∗ be the optimal solution to Program (8). We prove

Theorem 2 by contradiction. Assume, on the contrary, that remov-

ing the second constraint leads to a different optimal objective value.

The new objective value can only be larger since removing a con-

straint results in a larger feasible region. This means the solution

𝜋 to the new program is infeasible in the original program 8. And

the constraint that it violates can only be the second constraint. Or

equivalently, there exists a signal 𝑠𝑖,𝑖′ and a bidder 𝑖′′, such that:

𝑚∑︁
𝑗=1

𝜋 (𝑠𝑖,𝑖′ |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖′, 𝑗 <
𝑚∑︁
𝑗=1

𝜋 (𝑠𝑖,𝑖′ |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖′′, 𝑗 .

This means bidders 𝑖 and 𝑖′ are no long the top two bidders. Let

𝑖 and 𝑖′ be the top two bidders in this case. We construct a new

signaling scheme as follows:

𝑆 ′ = 𝑆 \ {𝑠𝑖,𝑖′ }

𝜋 ′ (𝑠 |𝑢 𝑗 ) =
{
𝜋 (𝑠𝑖,𝑖′ |𝑢 𝑗 ) + 𝜋 (𝑠𝑖,𝑖′ |𝑢 𝑗 ) if 𝑠 = 𝑠𝑖,𝑖′

𝜋 (𝑠𝑖,𝑖′ |𝑢 𝑗 ) otherwise

.

Similar to the proof of Theorem 1, we can show that the new sig-

naling scheme achieves a weakly higher objective value than 𝜋 ,

and thus also higher than that achieved by 𝜋∗. It is easy to check

that the new signaling scheme satisfies the second constraint of

Program (8). This means 𝜋 ′ is feasible in the original Program (8),

but leads to a higher objective value, contradicting the optimality

of 𝜋∗. □

A.5 Proof of Lemma 3
Proof. Suppose on the contrary that in the optimal scheme, we

have𝜋∗ (𝑠𝑖′,𝑖 |𝑢 𝑗 ) > 𝜋∗ (𝑠𝑖′′,𝑖 |𝑢 𝑗 ). Let 𝑐 = 1

2

[
𝜋∗ (𝑠𝑖′,𝑖 |𝑢 𝑗 ) + 𝜋∗ (𝑠𝑖′′,𝑖 |𝑢 𝑗 )

]
and define

𝜋 (𝑠 |𝑢) =
{
𝑐 if 𝑠 ∈ {𝑠𝑖′,𝑖 , 𝑠𝑖′′,𝑖 } and 𝑢 = 𝑢 𝑗

𝜋∗ (𝑠 |𝑢) otherwise

.

We claim that 𝜋 is a feasible scheme. We only show that 𝜋 satisfies

the first constraint, as the other two constraints clearly hold. For

the first constraint, 𝜋 satisfies the inequality for any 𝑠 ∉ {𝑠𝑖′,𝑖 , 𝑠𝑖′′,𝑖 }
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since in this case 𝜋 (𝑠 |𝑢) = 𝜋∗ (𝑠 |𝑢). For signal 𝑠𝑖′,𝑖 , we have:∑︁
𝑗

𝜋 (𝑠𝑖′,𝑖 |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖′, 𝑗

=𝜋 (𝑠𝑖′,𝑖 |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖′, 𝑗 +
∑︁
𝑗 ′≠𝑗

𝜋 (𝑠𝑖′,𝑖 |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )𝑣𝑖′, 𝑗 ′

=𝑐𝑞(𝑢 𝑗 )𝑣𝑖′, 𝑗 +
∑︁
𝑗 ′≠𝑗

𝜋 (𝑠𝑖′,𝑖 |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )𝑣𝑖′, 𝑗 ′

=[𝑐 − 𝜋∗ (𝑠𝑖′,𝑖 |𝑢 𝑗 )]𝑞(𝑢 𝑗 )𝑣𝑖′, 𝑗 +
∑︁
𝑗 ′
𝜋∗ (𝑠𝑖′,𝑖 |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )𝑣𝑖′, 𝑗 ′

≥[𝑐 − 𝜋∗ (𝑠𝑖′,𝑖 |𝑢 𝑗 )]𝑞(𝑢 𝑗 )𝑣𝑖, 𝑗 +
∑︁
𝑗 ′
𝜋∗ (𝑠𝑖′,𝑖 |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )𝑣𝑖, 𝑗 ′

=𝑐𝑞(𝑢 𝑗 )𝑣𝑖, 𝑗 +
∑︁
𝑗 ′≠𝑗

𝜋 (𝑠𝑖′,𝑖 |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )𝑣𝑖, 𝑗 ′

=
∑︁
𝑗

𝜋 (𝑠𝑖′,𝑖 |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖, 𝑗 ,

where the inequality holds since 𝜋∗ is feasible and 𝑐 < 𝜋∗ (𝑠𝑖′,𝑖 |𝑢 𝑗 )
and 𝑣𝑖, 𝑗 > 𝑣𝑖′, 𝑗 . Similarly, we can also show that signal 𝑠𝑖′′,𝑖 satisfies:∑︁

𝑗

𝜋 (𝑠𝑖′′,𝑖 |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖′′, 𝑗 ≥
∑︁
𝑗

𝜋 (𝑠𝑖′′,𝑖 |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖, 𝑗 .

Following arguments similar to the proof of Lemma 1, we know

that 𝐽𝛼 (𝜋 ;𝑢 𝑗 , 𝑠) ≥ 𝐽𝛼 (𝜋∗;𝑢 𝑗 , 𝑠),∀𝑠 . Therefore, 𝜋 achieves a higher

objective value than 𝜋∗, contradicting to the optimality of 𝜋∗. □

A.6 Proof of Lemma 4
Proof. Let 𝜖 > 0 be any sufficiently small positive number. We

define 𝜋 ′ and 𝜋 as follows:

𝜋 ′ (𝑠 |𝑢) =


𝜋∗ (𝑠𝑖′,𝑖 |𝑢 𝑗 ) + 𝜖 if 𝑠 = 𝑠𝑖′,𝑖 and 𝑢 = 𝑢 𝑗

𝜋∗ (𝑠𝑖′′,𝑖 |𝑢 𝑗 ) − 𝜖 if 𝑠 = 𝑠𝑖′′,𝑖 and 𝑢 = 𝑢 𝑗

𝜋∗ (𝑠 |𝑢) otherwise

,

𝜋 (𝑠 |𝑢) =
{
𝑐 if 𝑠 ∈ {𝑠𝑖′,𝑖 , 𝑠𝑖′′,𝑖 } and 𝑢 = 𝑢 𝑗

𝜋∗ (𝑠 |𝑢) otherwise

,

where 𝑐 = 1

2

[
𝜋∗ (𝑠𝑖′,𝑖 |𝑢 𝑗 ) + 𝜋∗ (𝑠𝑖′′,𝑖 |𝑢 𝑗 )

]
. Clearly, we have Rev(𝜋 ′) =

Rev(𝜋∗). As for Privacy(𝜋 ′), we define

𝛽 =
𝑐 − 𝜋∗ (𝑠𝑖′,𝑖 |𝑢 𝑗 ) − 𝜖
𝑐 − 𝜋∗ (𝑠𝑖′,𝑖 |𝑢 𝑗 )

.

One can easily check that 𝛽𝜋∗ + (1 − 𝛽)𝜋 = 𝜋 ′.
Since 𝐷 𝑓 (𝜋 ;𝑢, 𝑠) is a convex function in 𝜋 , we have that for any

signal 𝑠 and user 𝑢,

𝛽𝐷 𝑓 (𝜋∗;𝑢, 𝑠) + (1 − 𝛽)𝐷 𝑓 (𝜋 ;𝑢, 𝑠)
≥𝐷 𝑓 (𝛽𝜋∗ + (1 − 𝛽)𝜋 ;𝑢, 𝑠)
=𝐷 𝑓 (𝜋 ′;𝑢, 𝑠).

According to the proof of Lemma 3, we know that 𝐷 𝑓 (𝜋 ;𝑢, 𝑠) ≤
𝐷 𝑓 (𝜋∗;𝑢, 𝑠). Thus we have:

𝐷 𝑓 (𝜋∗;𝑢, 𝑠) =𝛽𝐷 𝑓 (𝜋∗;𝑢, 𝑠) + (1 − 𝛽)𝐷 𝑓 (𝜋∗;𝑢, 𝑠)
≥𝛽𝐷 𝑓 (𝜋∗;𝑢, 𝑠) + (1 − 𝛽)𝐷 𝑓 (𝜋 ;𝑢, 𝑠)
=𝐷 𝑓 (𝜋 ′;𝑢, 𝑠).

This immediately implies that 𝜋 ′ leads to a higher objective value

than 𝜋∗. However, 𝜋 ′ is not optimal. The only reason is that 𝜋 ′ is
not feasible. Compared with 𝜋∗, 𝜋 ′ only changes the conditional

probabilities of sending signals 𝑠𝑖′,𝑖 and 𝑠𝑖′′,𝑖 . The second and third

constraints are clearly satisfied by 𝜋 ′. Thus the only affected con-

straints are the following two:∑︁
𝑗 ′
𝜋∗ (𝑠𝑖′,𝑖 |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )𝑣𝑖′, 𝑗 ′ ≥

∑︁
𝑗 ′
𝜋∗ (𝑠𝑖′,𝑖 |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )𝑣𝑖, 𝑗 ′ (15)∑︁

𝑗 ′
𝜋∗ (𝑠𝑖′′,𝑖 |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )𝑣𝑖′′, 𝑗 ′ ≥

∑︁
𝑗 ′
𝜋∗ (𝑠𝑖′′,𝑖 |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )𝑣𝑖, 𝑗 ′ (16)

If changing from 𝜋∗ to 𝜋 ′ violates Inequality (15), Then we have∑︁
𝑗 ′
𝜋 ′ (𝑠𝑖′,𝑖 |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )𝑣𝑖′, 𝑗 ′ <

∑︁
𝑗 ′
𝜋 ′ (𝑠𝑖′,𝑖 |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )𝑣𝑖, 𝑗 ′ ,

or equivalently,

𝜋 ′ (𝑠𝑖′,𝑖 |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖′, 𝑗 +
∑︁
𝑗 ′≠𝑗

𝜋 ′ (𝑠𝑖′,𝑖 |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )𝑣𝑖′, 𝑗 ′

<𝜋 ′ (𝑠𝑖′,𝑖 |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖, 𝑗 +
∑︁
𝑗 ′≠𝑗

𝜋 ′ (𝑠𝑖′,𝑖 |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )𝑣𝑖, 𝑗 ′ .

Plugging in the definition of 𝜋 ′ yields:

𝜖𝑞(𝑢 𝑗 )𝑣𝑖′, 𝑗 +
∑︁
𝑗 ′
𝜋∗ (𝑠𝑖′,𝑖 |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )𝑣𝑖′, 𝑗 ′

<𝜖𝑞(𝑢 𝑗 )𝑣𝑖, 𝑗 +
∑︁
𝑗 ′
𝜋∗ (𝑠𝑖′,𝑖 |𝑢 𝑗 ′ )𝑞(𝑢 𝑗 ′ )𝑣𝑖, 𝑗 ′ .

With Inequality (15), the above can happen for any small positive

number 𝜖 only if Inequality (15) is actually an equation and 𝑣𝑖′, 𝑗 <

𝑣𝑖, 𝑗 .

Similarly, if changing from 𝜋∗ to 𝜋 ′ violates Inequality (16), we

must have that Inequality (16) holds as equality and that 𝑣𝑖′′, 𝑗 >

𝑣𝑖, 𝑗 . □

A.7 Proof of Lemma 5
Proof. For any 𝛼, 𝛼 ′ ∈ [0, 1], we have

𝛼Rev(𝜋𝛼 ) + (1 − 𝛼)Privacy(𝜋𝛼 )
≥𝛼Rev(𝜋𝛼 ′ ) + (1 − 𝛼)Privacy(𝜋𝛼 ′ )

and

𝛼 ′Rev(𝜋𝛼 ′ ) + (1 − 𝛼 ′)Privacy(𝜋𝛼 ′ )
≥𝛼 ′Rev(𝜋𝛼 ) + (1 − 𝛼 ′)Privacy(𝜋𝛼 ).

This is because 𝜋𝛼 and 𝜋𝛼 ′ are the solutions to 𝑃 (𝛼) and 𝑃 (𝛼 ′),
respectively. With slight re-arrangement, the above inequalities

can be written as:

𝛼 [Rev(𝜋𝛼 ) − Rev(𝜋𝛼 ′ )]
+ (1 − 𝛼) [Privacy(𝜋𝛼 ) − Privacy(𝜋𝛼 ′ )] ≥ 0 (17)

𝛼 ′ [Rev(𝜋𝛼 ′ ) − Rev(𝜋𝛼 )]
+ (1 − 𝛼 ′) [Privacy(𝜋𝛼 ′ ) − Privacy(𝜋𝛼 )] ≥ 0 (18)

Multiplying Equation (17) by 1−𝛼 ′ and Equation (18) by 1−𝛼 , and
then adding them together gives:

(𝛼 − 𝛼 ′) [Rev(𝜋𝛼 ) − Rev(𝜋𝛼 ′ )] ≥ 0.
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It follows that Rev(𝜋𝛼 ) is monotone increasing in 𝛼 . With simi-

lar arguments, we can also show that Privacy(𝜋𝛼 ) is monotone

decreasing in 𝛼 . □

A.8 Proof of Theorem 3
Proof. We first prove the first part of the statement. For any 𝛼 ,

let 𝜋𝛼 be the optimal solution to 𝑃 (𝛼). Define

𝜆 =
Rev(𝜋𝛼 ) − Rev𝑏𝑎𝑠𝑒

Rev𝑀 − Rev𝑏𝑎𝑠𝑒

. (19)

The choice of 𝜆 clearly satisfies Equation (10). Now we show it also

satisfies Equation (11). Define 𝜋 = 𝜆𝜋1 + (1 − 𝜆)𝜋0. According to

the choice of 𝜆 (Equation (19)) and the linearity of Rev(𝜋), we have
Rev(𝜋𝛼 ) =𝜆Rev(𝜋1) − 𝜆Rev(𝜋0) + Rev(𝜋0)

=𝜆Rev(𝜋1) + (1 − 𝜆)Rev(𝜋0)
=Rev(𝜋).

Therefore,

Privacy(𝜋𝛼 ) =
𝐽𝛼 (𝜋𝛼 ) − 𝛼Rev(𝜋𝛼 )

1 − 𝛼

≥ 𝐽𝛼 (𝜋) − 𝛼Rev(𝜋𝛼 )
1 − 𝛼

=
𝛼Rev(𝜋) + (1 − 𝛼)Privacy(𝜋) − 𝛼Rev(𝜋𝛼 )

1 − 𝛼
=Privacy(𝜋)
≥𝜆Privacy(𝜋1) + (1 − 𝜆)Privacy(𝜋0)
=𝜆Privacy𝑏𝑎𝑠𝑒 + (1 − 𝜆)Privacy𝑀 ,

where the first inequality is due to the optimality of 𝐽𝛼 (𝜋𝛼 ), and
the second inequality is because of the concavity of the function

Privacy(𝜋). One can easily check that the above inequality is equiv-
alent to Equation (11).

Now we prove the second part of the statement. Let𝐷 denote the

feasible region described by Program (9). Consider the following

program:

maximize: Privacy(𝜋)
subject to: Rev(𝜋) ≥ Rev(𝜋)

𝜋 ∈ 𝐷
(20)

The program is clearly feasible (𝜋 is a feasible solution) and convex

(Rev(𝜋) is linear and Privacy(𝜋) is concave). Therefore, the solu-
tion to the above program satisfies the two conditions described

in the theorem. It suffices to show that the solution can also be

obtained by solving Program 9 with a certain 𝛼 .

We apply Lagrangian relaxation to the first constraint of the

above program and obtain

maximize: Privacy(𝜋) + 𝛽 (Rev(𝜋) − Rev(𝜋))
subject to: 𝜋 ∈ 𝐷 (21)

Similar to the proof of Lemma 2, we know that if 𝛽 is set to be the

optimal dual variable, the optimal solution to the relaxed program

is also the optimal solution to Program 20. □

A.9 Proof of Theorem 4.
Proof. We compare both sides with

∑
𝑗 𝑞(𝑢 𝑗 ) max𝑖 𝑣𝑖 𝑗 − 𝑑 (𝑉 ).

We first show Rev(𝜋0) ≥ ∑
𝑗 𝑞(𝑢 𝑗 ) max𝑖 𝑣𝑖 𝑗 − 𝑑 (𝑉 ). 𝜋0 maxi-

mizes privacy and reveals no information. In this case, each buyer’s

posterior belief over user 𝑢 𝑗 is just the same as their prior 𝑞(𝑢 𝑗 ).
All the buyers just bid their expected valuation and the winner is

always the same bidder, which we denote by 𝑖 . Then we have∑︁
𝑗

𝑞(𝑢 𝑗 ) max

𝑖
𝑣𝑖 𝑗 − Rev(𝜋0)

=
∑︁
𝑗

𝑞(𝑢 𝑗 ) max

𝑖
𝑣𝑖 𝑗 −

∑︁
𝑘

∑︁
𝑗

𝜋0 (𝑠𝑘 |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖, 𝑗

=
∑︁
𝑗

𝑞(𝑢 𝑗 )
[
max

𝑖
𝑣𝑖 𝑗 − 𝑣𝑖, 𝑗

∑︁
𝑘

𝜋0 (𝑠𝑘 |𝑢 𝑗 )
]

=
∑︁
𝑗

𝑞(𝑢 𝑗 )
[
max

𝑖
𝑣𝑖 𝑗 − 𝑣𝑖, 𝑗

]
≤

∑︁
𝑗

𝑞(𝑢 𝑗 )
[
max

𝑖
𝑣𝑖 𝑗 − min

𝑖
𝑣𝑖 𝑗

]
=
∑︁
𝑗

𝑞(𝑢 𝑗 ) max

𝑖,𝑖′
|𝑣𝑖 𝑗 − 𝑣𝑖′ 𝑗 |

≤
∑︁
𝑗

𝑞(𝑢 𝑗 )
[
max

𝑗
{max

𝑖,𝑖′
|𝑣𝑖 𝑗 − 𝑣𝑖′ 𝑗 |}

]
=max

𝑖,𝑖′
{max

𝑗
|𝑣𝑖 𝑗 − 𝑣𝑖′ 𝑗 |}

∑︁
𝑗

𝑞(𝑢 𝑗 )

=𝑑 (𝑉 ).
Now we prove Rev𝑀 ≤ ∑

𝑗 𝑞(𝑢 𝑗 ) max𝑖 𝑣𝑖 𝑗 .

Rev𝑀 =Rev(𝜋1)

=
∑︁
𝑘

∑︁
𝑗

𝜋1 (𝑠𝑘 |𝑢 𝑗 )𝑞(𝑢 𝑗 )𝑣𝑖2 (𝑠𝑘 ), 𝑗

≤
∑︁
𝑘

∑︁
𝑗

𝜋1 (𝑠𝑘 |𝑢 𝑗 )𝑞(𝑢 𝑗 ) max

𝑖
𝑣𝑖 𝑗

=
∑︁
𝑗

𝑞(𝑢 𝑗 ) max

𝑖
𝑣𝑖 𝑗

∑︁
𝑘

𝜋1 (𝑠𝑘 |𝑢 𝑗 )

=
∑︁
𝑗

𝑞(𝑢 𝑗 ) max

𝑖
𝑣𝑖 𝑗 .

□

B Additional Experiment Results
In this section, we provide the experiment results for𝑚 = 20 on

both synthetic and real data sets. The results for the independent

valuation setting are shown in Figure 7 and 8. The results for the

correlated valuation setting are shown in Figure4, Figure5,Figure 6,

Figure9 and 10. All the figures within𝑚 = 20 show similar patterns

to the cases with𝑚 = 10.
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(a) KL divergence (b) JS divergence (c) TV divergence

Figure 7: Performance with𝑚 = 20 on the synthetic data set. The points indicated by diamond markers and round markers
correspond to the results by revealing full information and no information (𝜋0), respectively.

(a) KL divergence (b) JS divergence (c) TV divergence

Figure 8: Performance with𝑚 = 20 on the iPinYou data set. The points indicated by diamond markers and round markers
correspond to the results by revealing full information and no information (𝜋0), respectively.

(a) KL divergence (b) JS divergence (c) TV divergence

Figure 9: Performance with𝑚 = 20 and five different weight coefficients on the synthetic data set.
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(a) KL divergence (b) JS divergence (c) TV divergence

Figure 10: Performance with𝑚 = 20 and five different weight coefficients on the iPinYou data set.
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