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ABSTRACT
First price auctions are widely used in government contracts and

ads auctions. In this paper, we consider the Bayesian Nash Equilib-

rium (BNE) in first price auctions with discrete value distributions.

We study the characterization of the BNE in the first price auction

and provide an algorithm to compute the BNE at the same time.

Moreover, we prove the existence and the uniqueness of the BNE.

Some of the previous results in the case of continuous value dis-

tributions do not apply to the case of discrete value distributions.

In the meanwhile, the uniqueness result in discrete case cannot be

implied by the uniqueness property in the continuous case. Unlike

in the continuous case, we do not need to solve ordinary differential

equations and thus do not suffer from the solution errors therein.

Compared to the method of using continuous distributions to ap-

proximate discrete ones, our experiments show that our algorithm

is both faster and more accurate.

The results in this paper are derived in the asymmetric indepen-

dent private values model, which assumes that the buyers’ value

distributions are common knowledge.
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1 INTRODUCTION
Recently, the display advertising industry has switched from second-

price to first-price auctions,
1
and one important reason is that some

advertisers no longer trust the exchange to honestly follow the

second-price auction rules [24]. From a buyer’s point of view, he

does not trust the auctioneer since the auctioneer could also benefit

from manipulating the auction rules after observing the sealed

bids [1]. Akbarpour and Li [1] show that the first-price auction

is the unique credible and static optimal auction, which may be

∗
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one potential backing theory for the trend of adopting the first-

price auction in the ad exchange industry. Akbarpour and Li [1]

also prove that no mechanism is static, credible, and strategy-proof

(incentive compatible) at the same time. In particular, being credible

means that it is incentive compatible for the auctioneer to follow

the rules and being static roughly means that the auction is sealed-

bid. Therefore, the first-price auction naturally becomes the only

choice for the ad exchange industry, in which credibility becomes

a major concern and sealed-bid is also critical to keep the auction

process time-efficient for production needs.

In contrast to the crucial needs from practice, the understanding

of the first-price auction from auction theory remains shallow.

The essential obstacle is the complex equilibrium structure in first-

price auctions. Following the first step by Vickrey [25] for the

symmetric setting, it has been a tough and long journey towards

the existence, the uniqueness and the computation of the Bayesian

Nash equilibrium of first-price auctions in general settings. Plum

[21] covers the power distribution G1(x) = x µ and G2(x) = (
x
β )

µ

with the same support. Kaplan and Zamir [12] solve the problem

for uniform distributions with different support.

In this paper, with the application in ad auctions as one of the

important motivations, we focus on the computation of BNEs in

first-price auctions where the buyers’ values are independently

drawn from discrete prior distributions. We study the discrete value

setting for several reasons. First, it is questionable that buyers are

always assumed to have continuous distribution. Where does this

continuous distribution come from? Furthermore, from a practical

point of view, how should we generate such a distribution since we

could only get a finite number of observations about a buyer’s his-

tory actions? Second, discrete distribution is a basic setting in which

the BNE shows an elaborated structure. The results in the discrete

setting can provide us with more structural insights that can not

be obtained from the continuous case. Third, discrete distributions

can be used to approximate the general continuous distribution,

our algorithm for computing the BNE under discrete distribution

can also be applied under continuous distribution.

1.1 Our Contributions
We give an efficient algorithm to find the BNE of the first price

auction. Compared to the algorithms developed for continuous

distribution, our algorithm does not involve ordinary differential

equations, which makes our algorithm robust and much faster. For

any possible bid, by scrutinizing the buyers who might report it,

we give a clear characterization of the BNE in the discrete setting.

Previous methods make use of Nash’s Theorem to prove the exis-

tence of the equilibrium in the continuous case, while we provide a

constructive proof in the discrete case.

https://support.google.com/admanager/answer/7128958
https://support.google.com/admanager/answer/7128958


We show that the equilibrium is unique in the discrete case

(Theorem 5.4). The uniqueness result by Lebrun [15] relies on a

technical assumption about buyers’ value distributions. In contrast,

we do not need any assumption. Furthermore, in the continuous

case, we need to be very careful when a buyer’s value is near the

smallest value. In the discrete case, each buyer’s strategy around

the smallest value has relatively nice properties.

1.2 Related Works
Besides the closed-form solution of the equilibrium, there is also a

line of papers that focus on other aspects of the problem [20, 22, 23].

Lebrun [13] first proves the existence of a Bayesian Nash equilib-

rium under a distribution assumption. Later Athey [3], Maskin and

Riley [18] prove the existence of equilibrium without distribution

assumption. Maskin and Riley [18] show the existence for discrete

distributions by applying Nash’s Theorem. To show the existence

in the continuous case, they constructed a series of discrete distri-

butions that approaches the actual continuous case. In this paper,

we prove the existence result by construction.

After proving the existence of the BNE, researchers began to

consider the its uniqueness. For symmetric distributions, Chawla

and Hartline [5] prove the uniqueness by ruling out asymmetric

equilibria. For asymmetric distributions, Maskin and Riley [19]

show that the equilibrium is unique for asymmetric distributions

with the assumption that buyers’ distributions share the same upper

endpoint. Lebrun [14, 15] prove the uniqueness for more general

settings but still with the assumption that the cumulative value

distribution functions are strictly log-concave at certain points.

Escamocher et al. [6] investigate the existence and the computation

of BNEs in the discrete case, under the assumption that buyers

can only place discrete bids. They consider both the randomized

tie-breaking and the Vickery tie-breaking and give different results.

However, both the continuous and the discrete case without

assumptions are still left open. In this paper, we solve the discrete

value distribution case.

In the numerical analysis literature, Marshall et al. [17] give

the first numerical analysis for two special distributions. Their

backward-shooting method then become the standard method for

computing the equilibrium strategies of asymmetric first-price auc-

tions [4, 7, 16]. The backward-shooting method first computes the

smallest winning bid, then repeatedly guess the largest winning bid

and then solving ordinary differential equations all the way down

in the bid space to see if the smallest winning bid given by the

solution to the differential equations matches the actual one. One

common issue of this method is the computation error in solving

ordinary differential equations. Bajari [4] uses a polynomial to ap-

proximate the inverse bidding strategy. To compute a solution with

high precision, Gayle and Richard [10] use Taylor-series expansions.

Our method belongs to the backward-shooting category. We do

not need to solve ordinary differential equations, but the algorithm

still needs to repeatedly guess the largest winning bid. Fibich and

Gavish [9] propose a forward-shooting method and numerically

solve the case with power-law distributions. However this forward-

shooting method does not work in the discrete case. Armantier

et al. [2] use a sequence of constrained strategic equilibrium to

approximate the exact equilibrium. This method can be applied to

a broad class of Bayesian games. Hubbard and Paarsch [11] give a

comprehensive survey in numerical analysis literature.

2 PRELIMINARIES
2.1 Model
Suppose the seller has one item for sale and there are n potential

buyers N = {1, ...,n}. The item is sold through a sealed-bid first-

price auction. Each buyer has a private value for the item, which is

drawn according to a publicly known value distribution. In our set-

ting, we consider the case where the each buyer’s value distribution

is discrete. Also, we assume that for buyer i , the value support is a

finite set {v1

i ,v
2

i , ...,v
di
i } with cumulative distribution function Gi ,

i.e., Gi (v) = Prob{vi ≤ v}. Without loss of generality, we assume

0 ≤ v1

i < v
2

i < . . . < v
di
i .

Every buyer places a nonnegative bid bi simultaneously. Let

Fi (bi ) denote the cumulative distribution function of buyer i’s bids.
For simplicity, we assume that buyers have quasi-linear utilities

and no buyer overbids, i.e., no buyer will place a bid that is higher

than his value. The buyer with the highest bid wins the item and

pays what he bids. Each buyer’s strategy is a mapping from his

private value to his bid. The strategies form a Bayesian Nash Equi-

librium (BNE) if no bidder has an incentive to change his strategy

unilaterally in the Bayesian setting.

In the continuous value setting, each buyer’s strategy maps a

value to a bid. For example, suppose there are two i.i.d. buyers

with value uniformly distributed between [0, 1]. In the BNE, each

buyer bids half of his private value. But in the discrete setting, each

buyer’s strategy is randomized, and maps a value to a set of possible

bids, with a certain probability distribution.

Example 2.1. There are two i.i.d. buyers. Each buyer has value 1

and 2 with probability 0.5. In the equilibrium, when a buyer’s value

is 2, it is possible for him to place any bid in [1, 1.5], and the bid

density function is
1

(2−x )2 ,∀x ∈ [1, 1.5]. When a buyer’s value is 1,

the buyer bids 1 with probability 1.

Figure 1: The equilibrium strategy of two i.i.d. buyers with
uniform {1, 2} value distribution. Although the value distri-
bution is discrete, the bids are continuous.

Our objective is to find the bidding strategies that constitute a

Bayesian Nash equilibrium. Before we start, we need to make an

assumption of the tie-breaking rule to guarantee the existence of

an equilibrium (see Example 2 in Maskin and Riley [18], where an

equilibrium does not exist). We consider an alternative tie-breaking



rule introduced by Maskin and Riley [18]. When there are multiple

highest bids, we will allocate the item to the buyer with the highest

value.

Assumption 1 (Maskin and Riley [18]). Ties are broken by
running a Vickrey auction among the highest buyers.2

In the continuous value setting, this assumption is unnecessary,

but in the discrete value setting, we need this assumption to deal

with best response issue. Without this assumption, we will still get

an approximate BNE using our algorithm. We will discuss more

about this assumption (see Example 2.6).

2.2 Basic Structure of the BNE
To assist later arguments, we restate several properties of the

Bayesian Nash equilibrium, mainly summarized by Maskin and

Riley [19].
3
Giving all buyers’ strategies, if any buyer can win with

a certain probability by bidding b then we call b awinning bid. With-

out loss of generality, we assume the set of winning bids is closed

and there exists a smallest winning bid b. As long as a buyer’s bid

is higher than or equal to b, he can win with a certain probability.

If buyers’ strategies form a BNE, the smallest winning bid b will be

determined uniquely by the buyers’ value distributions:

Lemma 2.2 (Maskin and Riley [19]). Assume buyer i∗ has the
largest smallest value, i.e., v1

i∗ = maxj v
1

j . Then the smallest winning
bid is b = arg maxb (v

1

i∗ − b)
∏

i,i∗ Gi (b).

It is possible that a buyer with a certain value v
j
i may place

multiple bids. Let Si (v
j
i ) be the set of possible bids for buyer i when

he has value v
j
i . For ease of presentation, we assume that Si (v

j
i ) is

a closed set, otherwise, we can take the closure of the support as

Si (v
j
i ). Denote buyer i’s all possible bids by Si , i.e., Si =

⋃
j Si (v

j
i ).

Maskin and Riley [19] show that for any winning bid b, there are
at least two buyers i and j , such that b ∈ Si and b ∈ Sj . The intuition
is that any buyer who places a winning bid b needs a competitor,

otherwise, the buyer can place b − ϵ to increase his utility.

Lemma 2.3 (Maskin and Riley [19]). In the BNE of the first-price
auction, for buyer i and any bi > b, if bi ∈ Si , then there must exist
another buyer, who bids in (bi − ϵ,bi ) with positive probability for
any ϵ .

Maskin and Riley [19] show that, in first price auctions, a buyer

would not give a particular bid with positive probability when this

bid is larger than or equal to b.

Lemma 2.4 (Maskin and Riley [19]). For any buyer i , there is no
mass point above b in buyer i’s bid distribution.

The following lemma shows that when a buyer’s value is larger

than or equal to b, his bidding strategy is monotone in his value.

Lemma 2.5 (Maskin and Riley [19]). For each buyer, his bidding
strategy is monotone in value, i.e., max Si (v

j
i ) ≤ min Si (v

j+1

i ) for
v
j
i ≥ b.

2
This can be implemented by letting the highest buyers submit new bids.

3
Although they assume twice continuously differentiable value distributions and the

buyers have the same upper limit of values, the lemmas still hold for the present

setting.

Here we provide an example of what the BNE looks like in the

discrete case. The computation of such a BNE will be clear after the

analysis of our algorithm.

Example 2.6. Suppose there are 4 buyers with the following

discrete value distributions:

x G1(x) = x G2(x) =
20 1 14 1

10 11

√
7/24

√
3 13 4/

√
21

2

√
77/12

√
2 1 2

√
22/7
√

7

x G3(x) = x G4(x) =
20 1 12 1

9 11/12 1 3

√
3/2
√

7

In the BNE, the buyers bid according to the following bid distribu-

tions:

x ∈ F1(x) = x ∈ F2(x) =

(8, 9] 11

20−x (6, 8]
√

8(14−x )
(20−x )(12−x )

(6, 8] 11

12

√
2(20−x )

(14−x )(12−x ) [2, 6] 8

7

√
13−x

(10−x )(9−x )

[2, 6] 77

48

√
10−x

(9−x )(13−x ) {1}
2

√
22

7

√
7

x ∈ F3(x) = x ∈ F4(x) =

[8, 9] 11

20−x [6, 8]
√

18(12−x )
(20−x )(14−x )

[2, 6] 11

6

√
7(9−x )

3(10−x )(13−x ) {1}
3

√
3

2

√
7

Figure 2: A value’s corresponding bid interval is indicated
by braces. A dot implies a positive probability (point mass).
When Buyer 1 with value 2 and Buyer 3 with value 9 both
bid 2. According to Assumption 1, Buyer 3 wins in this case.

3 OVERVIEW OF OUR ALGORITHM
As mentioned in Section 1.2, our algorithm falls in the backward-

shooting category. In first-price auctions, if the largest winning

bid
¯b is given, our theoretical analysis enables us to compute the



buyers’ bid distributions all the way down to the smallest winning

bid b. However, it turns out that we only know how to compute

the smallest winning bid b (Theorem 2.2), but have no idea about
¯b.

Therefore, the backward-shooting algorithms just repeatedly guess

¯b and see if the computed b(¯b) matches the actual b, reducing the
computation of the BNE to a searching problem. An overview of

the backward-shooting algorithm is shown in Algorithm 1, where

a binary search algorithm is used.

Algorithm 1: Overview of the backward-shooting algo-

rithm

Input :Buyers’ value distributions Gi .

Output :Buyers’ bid distributions Fi .
1 Compute the smallest winning bid b using Lemma 2.2 ;

2 UB ← max{∪i ∈N supp(Gi )}, LB ← 0 ;

3 while some exit condition is not met do
4 ¯b ← 1

2
(UB + LB);

5 Compute Fi all the way down from
¯b to the

corresponding smallest winning bid b(¯b);

6 if b(¯b) > b then
7 UB ← ¯b ;

8 else
9 LB ← ¯b ;

10 return Fi ;

In Algorithm 1,UB and LB are the upper bound and the lower

bound of the largest winning bid. According to Lemma 2.2, the

smallest winning bid b can be easily determined. The exit condition

measures how close our guess of
¯b is to the actual largest winning

bid, for example, we can check ifUB − LB < ϵ or we can compare

whether b(¯b) is close enough to b. And guaranteed by Theorem

4.10, 4.12 and Corollary 4.11, we know that b(¯b) is continuous and
increasing with respect to the current guess

¯b. Therefore the while
loop will stop in the end as long as the guess

¯b is close enough to

the true one. However, the while loop may not end in an acceptable

time for some instances shown in Figure 4.

Algorithm 2: Compute b(¯b) given guess
¯b.

Input : the largest winning bid guess
¯b.

Output : the smallest winning bid b(¯b).

1 Initialize b ← ¯b,Λ(b) ← ∅ ;

2 Update Λ(b) by repeatedly adding buyers to Λ(b) according

to Theorem 4.6;

3 while |Λ(b)| ≥ 2 and b > 0 do
4 Predict the next change position b ′ of the bidding set

according to Theorem 4.8 and 4.6;

5 Set b ← b ′;

6 Update the bidding set Λ(b ′) by removing buyers

according to Theorem 4.8;

7 Update the bidding set Λ(b ′) by adding buyers

according to Theorem 4.6;

8 return b(¯b) = b;

In the continuous value distribution case, the computation of

b(¯b) given ¯b is done through solving ordinary differential equations.

However, in the discrete case, we compute b(¯b) with Algorithm

2. We define a core structure called the “bidding set” (Definition

4.1), and starting from
¯b, we update the bidding set as the bid goes

down (i.e., compute where each buyer enters or leaves the bidding

set with all his values). Each buyer enters the bidding set with

his largest “unconsumed” value when certain conditions are met

(Theorem 4.6), and leaves the bidding set when the probability

of the corresponding value is used up (Theorem 4.8), hence the

value is “consumed”. After all buyers consumed all their values, the

corresponding b(¯b) is found. In our setting, Algorithm 2 is used in

Algorithm 1 as a sub-routine.

4 THE BIDDING SET
Our objective is to compute every buyer’s strategy in BNE. Since

a buyer’s bidding strategy is monotone, it suffices to compute the

bid distribution because we can map a buyer’s value to a bid with

the same quantile in his bid distribution. However, when the bid

support is not continuous, there might exist multiple bids with the

same quantile. We introduce a useful tool called the “bidding set”,

and analyze how the bidding set changes in the bid space. With the

analysis of the structure, an algorithm of computing the BNE can

be naturally derived.

Definition 4.1 (Bidding set and waiting list). The set of buyers
whose bidding strategies include bid x is called the bidding set,
denoted by Λ(x), i.e., Λ(x) = {i | x ∈ Si }. The set of other buyers
N − Λ(x) is called the waiting list at bid x .

When there is no ambiguity, we use Λ instead. The following

theorem is about the relationship between the bid distribution andΛ.
For any buyer set Λ, let FΛ(x) denote the product of the cumulative

bid distribution of buyers in Λ, i.e., FΛ(x) =
∏

i ∈Λ(x ) Fi (x). We

abuse notation and use vi (x) to represent player i’s value when he

bids x in the equilibrium (vi (x) is well-defined according to Lemma

2.5).

Before discussing how the bidding set Λ changes in the bid

space, let’s first consider some properties of the bidding set. Define

function

hi (x) =
1

|Λ(x)| − 1

©«
∑

j ∈Λ(x )

1

vj (x) − x

ª®¬ − 1

vi (x) − x
,∀i ∈ Λ(x).

Theorem 4.2. SupposeΛ(x) does not change in bid interval (b1,b2),
and vi (x) is constant for x ∈ (b1,b2), i ∈ Λ(x). Then the bid distribu-
tion of every buyer in Λ is differentiable in this interval. In fact, for
any x ∈ (b1,b2) we have

fi (x)

Fi (x)
= hi (x),∀i ∈ Λ.

All proofs are omitted due to the lack of space.

If we know what the bidding set Λ(x) is for every possible x
in the BNE, we can construct each buyer’s bid distribution fi (x)
according to Theorem 4.2. Therefore, the rest of this section is

devoted to the analysis of how the bidding set changes.

Now we discuss the basic components Si (v
j
i ). In the continu-

ous case, it is known that the support of the bidding strategy is



connected for every buyer [14]. This result no longer holds in the

discrete value setting. In Example 2.6, Buyer 3’s possible bids have

two connected parts. However, we can prove a weaker version of

this structural result.

Theorem 4.3. Si (v
j
i ) is an interval when v ji ≥ b.

4.1 Change Positions of the Bidding Set
In this section, we consider some properties of the bidding set when

it changes. These results are helpful for computing these change

positions.

Definition 4.4. When bidding set changes at x, we use Λ+(x) and
Λ−(x) to denote the buyers who bid in the upper neighborhood and

lower neighborhood around x , i.e.,

Λ+(x) = {i | ∃ϵ > 0, (x, x + ϵ) ⊆ Si } ,

Λ−(x) = {i | ∃ϵ > 0, (x − ϵ, x) ⊆ Si } .

Clearly, when a bidding interval Si (v
j
i ) starts or ends at a certain

bid x , Λ(x) changes. Therefore, to characterize how the bidding

set changes, it suffices to determine when a bid interval Si (v
j
i )

starts and ends, or equivalently, when a buyer enters and leaves the

bidding set. Our method falls in the backward-shooting category,

thus we compute the buyers’ bidding strategy from the largest

winning bid all the way down.

Definition 4.5. We say a buyer enters the bidding set with value

vi at bid x if x = max Si (vi ). Similarly, we say a buyer leaves the
bidding set if x = min Si (vi ).

Remark 1. Notice that entering the bidding set with value vi is
different from:

i < Λ+(x), and i ∈ Λ−(x).

The reason is that it is possible for the buyer to leave the bidding set
with another value v ′i and enters immediately at the same point, but
with a different value vi .

4.2 When to Enter the Bidding Set
The following theorem determines when should a buyer enter the

bidding set.

Theorem 4.6. Suppose buyer i has the largest unconsumed value
vi in the waiting list, he will enter the bidding set when one of the
following conditions is satisfied.
• |Λ| ≤ 1 and vi > x ;
• 1

vi−x ≤
1

|Λ |−1

∑
i ∈Λ

1

vj (x )−x
(or equivalently hi (x) ≥ 0) and

vi > x .

We provide an example to show how to apply Theorem 4.6.

Example 4.7. Consider bid 6 in Example 2.6 and Figure 2. Bidding

set Λ+(6) is {1, 2, 4}, with corresponding values 20, 14, and 12. all

buyers in Λ+(6) have consumed the probability of their current

value at bid 6, and they all leave the bidding set. Thus the bidding

set becomes empty and the waiting list contains all buyers. Buyer 2

and Buyer 1 enters the bidding set sequentially according to the first

condition in Theorem 4.6. Buyer 3 enters the bidding set according

to the second condition 1/(9− 6) ≤ 1/(10− 6)+ 1(13− 6). However,

Buyer 4 does not enter since his value is smaller than the current

bid. After the update, we have Λ−(6) = {1, 2, 3}.

4.3 When to Exit the Bidding Set
The probability of a buyer’s value being vi should equal the prob-

ability that he bids in the interval Si (vi ). By Theorem 4.3, the bid

set Si (vi ) of a specific value vi is a connected interval. Therefore,

once we know the maximum bid in Si (vi ), buyer i will not leave
the bidding set until value vi is consumed.

Theorem 4.8. Buyer i with value vki leaves the bidding set at x
when the cumulative probability of bidding set equals to the probabil-

ity of the value, i.e., Fi
(
max Si (v

k
i )
)
− Fi (x) = Gi (v

k
i ) −Gi (v

k−1

i ).

Example 4.9. Consider Example 2.6 and Figure 2, S1(20) begins

at bid 9 and consumes the probability of value 20 at bid 6. The

probability that buyer 1 bids in S1(20) is

F1(9) − F1(6) =
11

20 − 9

−
77

48

√
10 − 6

(9 − 6)(13 − 6)
= 1 −

11

24

√
7

3

,

which equals the probability of value 20.

4.4 Monotonicity of Change Points
Now we present some monotonicity results in the discrete setting.

These results are similar to the continuous case, but with different

proofs. Define

p
j
i = lnGi (v

j
i ) − lnGi (v

j−1

i ),∀i = 1, . . . ,n, j = 2, . . . , ik .

So {p
j
i }i=1, ...,n, j=2, ...,ik uniquely determines the value distribution

G. When there is no ambiguity, we use {p
j
i } for simplicity. We use

E(¯b, {p
j
i }) to denote the set of bidding intervals given by Algorithm

2 with a guessed largest bid
¯b and distribution G.

Theorem 4.10. The extreme points of every bid interval inE(¯b, {p ji })
is monotone in ¯b.

The proof is different from the continuous distribution. We prove

it by analyzing the algorithm directly.

Corollary 4.11. The position b(¯b) where Algorithm 2 stops is
strictly monotone in ¯b.

It is possible that some bid intervals remain at the same positions.

But the position where the algorithm stops increases strictly. Next

we prove the continuity of the endpoints of each bid interval.

Theorem 4.12. The limit of each bid interval constructed by Al-
gorithm 2 with the largest winning bid approaching to ¯b1, is same as
the bid interval constructed with the largest winning bid ¯b1.

5 EXISTENCE AND UNIQUENESS OF THE BNE
5.1 Existence
In Algorithm 2, if the point b(¯b) where the algorithm terminates

does not match the actual smallest winning bid b, the bidding

strategies we get do not form a BNE. But we show that if it does

match b, then the corresponding strategies do form a BNE.

Lemma 5.1. If b(¯b)matches the smallest winning bid b, the bidding
strategies given by Algorithm 2 is indeed a BNE.

Theorem 5.2. A Bayesian Nash Equilibrium always exists when
buyers have discrete value distributions.



Corollary 5.3. Buyers with identical value distributions have
identical bidding strategies in the BNE. Furthermore, if all buyers
have identical value distributions, i.e. symmetric distributions, the
Bayesian Nash equilibrium is also symmetric.

5.2 Uniqueness
According to the monotonicity of b(¯b), we can check whether the

guessed bid is too high or too low. Corollary 4.11 implies that only

one guess of the largest winning bid
¯b can possibly equate the

corresponding b(¯b) and the actual smallest winning bid b.

Theorem 5.4. There exists a unique Bayesian Nash equilibrium
when buyers have discrete value distributions.

Remark 2. By uniqueness, we mean the equilibrium above b is
unique. In Example 2.6, we can change buyer 2’s bids below 2 to any
other bids below 2, and still get an equilibrium. But we only focus on
the structure above the smallest winning bid.

In the continuous distribution case, in order to prove the unique-

ness result, Lebrun [15] relies on the assumption that the distri-

bution is strictly log-concave (fi/Fi is strictly decreasing) at the

highest lower extremity of the supports, i.e., v1

1
in our example.

Briefly speaking, he uses this assumption to handle the case where

some buyers always give bids that is larger than b. However, in the

discrete setting, according to our results, we do not need to deal

with such cases.

6 EXPERIMENTS
Algorithm 1 computes the BNE of the first-price auction by repeat-

edly guessing the largest winning bid
¯b. According to Theorem

4.2, the change points of the bidding set completely determines

the buyers’ bidding strategies in the BNE. And given a guess
¯b, we

compute change points of the bidding set Λ(x) using Algorithm 2.

6.1 Accuracy Comparison between Continuous
Algorithms and Our Algorithm

When buyers have discrete value distributions, one natural way of

computing the BNE is to approximate the discrete value distribution

with a continuous one. Of course, there are infinitely many ways

of approximation. Our choice is to replace a discrete value with a

“triangle” probability density function centered at that value, and

cover the interval [v1

i ,v
di
i ] with a small uniform distribution.

For simplicity, we assume that for all i and d , |vd+1

i − vdi | >

2w and w < vdi < 1 − w . Note that although we stick to this

approximation throughout this section, our analysis also applies to

other possible ways of approximation.

We implemented the continuous backward-shooting algorithm

using the characterization by Maskin and Riley [18]:

dti (b)

db
=
Gi (ti (b))

дi (ti (b)

©«
1

n − 1

n∑
j=1

1

tj (b) − b

ª®¬ − 1

ti (b) − b

 ,∀i ∈ [n].
(1)

Using a smaller step size s could significantly increase the num-

ber of loops inside Algorithm 3. However, using a smaller s could
also make the computation result more accurate. Also, when ti <

Algorithm 3: The continuous backward-shooting algo-

rithm

Input: step s , max winning bid guess
¯b

Output: the min winning bid

1 b ← ¯b, ti ← 1;

2 while ti > b,∀i ∈ [n] do
3 for i ∈ [n] do
4 compute t ′i (b) according to Equation (1);

5 ti ← ti − t
′
i (b) · s;

6 b ← b − s;

7 return b;

∪i ,d [v
d
i −w,v

d
i +w], i.e., fi (ti ) = ϵ , the ratio Fi (ti )

fi (ti )
could be very

large. Therefore, using a relatively large s could lead to a sudden

decrease of ti , causing the program to skip other vdi ’s in between.

Example 6.1. Consider the case where there are 6 buyers. Their
value distributions are as follows:

(v1

1
,v2

1
,v3

1
) = (0.08, 0.2, 0.8), (v1

2
,v2

2
,v3

2
) = (0.09, 0.3, 0.9),

(v1

3
,v2

3
,v3

3
) = (0.07, 0.12, 0.7), (v1

4
,v2

4
,v3

4
) = (0.07, 0.12, 0.7),

(v1

5
,v2

5
,v3

5
) = (0.07, 0.12, 0.7), (v1

6
,v2

6
,v3

6
) = (0.04, 0.12, 0.8),

(P1

1
, P2

1
, P3

1
) = (0.2, 0.76, 0.04), (P1

2
, P2

2
, P3

2
) = (0.3, 0.36, 0.34),

(P1

3
, P2

3
, P3

3
) = (0.3, 0.36, 0.34), (P1

4
, P2

4
, P3

4
) = (0.3, 0.36, 0.34),

(P1

5
, P2

5
, P3

5
) = (0.2, 0.15, 0.65), (P1

6
, P2

6
, P3

6
) = (0.2, 0.15, 0.65),

where Pdi is the probability of buyer i’s value being vdi One can

avoid the above problem by carefully tuning the parameter s . How-

ever, the possible large values of
Fi (ti )
fi (ti )

can cause other problems

that may not have easy solutions:

(1) a large
Fi (ti )
fi (ti )

leads to a large t ′i (b), meaning that t(b) de-

creases much faster than b. This may cause the algorithm to

terminate early if t(b) becomes smaller than b.
(2) in the next loop, t ′i (b) can be negative and ti will oscillate as

a result (see Figure 3b).

To understand the first problem, consider the following example:

Figure 3a shows the bidding strategy of Buyer 5 in the above

example. The minimum winning bid computed by the continuous

algorithm is about 0.12, while the actual minimum winning bid is

0.08, indicating that Algorithm 3 terminates early. The reason is

that during the execution of Algorithm 3, when b is near 0.12, t2 is

near 0.25, but t ′
2
is over 1500. This means that a slight decrease in b

could lead to a significant drop in t2, making t2 < b and terminating

the algorithm.

To understand the second problem, consider the case where ti is
close to b in the BNE for some b. Then t ′i is very likely to become

negative according to Equation (1), and it is not clear how we could

avoid such problems since the computation of t ′i is independent of
s .

Example 6.2. Consider the case where there are 3 buyers. Their
value distributions are as follows:

(v1

1
,v2

1
,v3

1
) = (0.1, 0.2, 0.25), (v1

2
,v2

2
,v3

2
) = (0.1, 0.2, 0.25),



(a) Early termination of continuous algorithm (b) The oscillation of continuous algorithms.

Figure 3: Accuracy comparison. The two curves in right figure correspond to buyer 1’s equilibrium bidding strategy computed
by both algorithms.

(v1

3
,v2

3
,v3

3
) = (0.1, 0.2, 0.25), (P1

1
, P2

1
, P3

1
) = (0.25, 0.25, 0.5),

(P1

2
, P2

2
, P3

2
) = (0.05, 0.45, 0.5), (P1

3
, P2

3
, P3

3
) = (0.05, 0.45, 0.5).

Figure 3b shows the bidding strategy of Buyer 1 in BNE. The

bid distribution F (b) is computed according to the corresponding

t(b). The oscillation in the curve indicates the oscillation in t(b). As
shown in the figure, the oscillation occurs when v(b) is close to b.

Although the continuous backward-shooting algorithm can be

problematic, our experiments show that it has good performance if

we only need to figure out the maximum winning bid
¯b. The prob-

lems we mentioned mainly affects the computation of the strategies

for smaller values. The computation of this part of strategies also

suffers from sensitivity issues, as discussed in [8]. To overcome this

difficulty, Fibich and Gavish [8] proposed another algorithm where

guessing the maximum winning bid is no longer needed. We also

try their algorithms and conduct experiments. When it comes to

approximating discrete value distributions with continuous ones,

the computation still suffers from sensitivity issues due to very

high condition numbers, implying that the sensitivity might be an

intrinsic issue of this problem.

However, our discrete algorithm does not use continuous distri-

butions to approximate discrete ones, thus can avoid all the above

problems. The computational complexity only depends on the num-

ber of value points. Also, our algorithm does not have the oscillation

problem or sensitivity issues, since our theoretical analysis already

characterizes the structure of the solution, and involves none of the

sensitivity computation mentioned above. Therefore, our discrete

algorithm can provide a much accurate solution compared to other

ones.

6.2 Running Time Comparison between
Continuous Algorithms and Our Algorithm

In this section, we compare the running time of previous contin-

uous algorithms and our discrete algorithm. Since the algorithm

provided by Fibich and Gavish [8] often gives a condition number

issue, we only compare our algorithm with Algorithm 3 in these

experiments. We conduct experiments for three different settings.

For each setting, the experiment setup is as follows: We generate

1000 first price auction instances, with each containing n buyers.

For each buyer, we sample d different values from the interval [0, 1],

and the corresponding value distribution is also randomly gener-

ated for each buyer. Then both our algorithm and Algorithm 3 are

applied to compute the Bayes-Nash equilibrium. Both algorithms

need to guess the maximum winning bid, so the final computed

minimum winning bid would be different from the actual minimum

winning bid. Therefore we also set a tolerance parameter tol , which
serves as a stopping criterion (i.e., the algorithm terminates when

the difference between the computed minimum winning bid and

the actual minimum winning bid is smaller than tol ). As these algo-
rithm runs, we record the running time of the algorithms on each

instance. Considering that in some cases, the algorithms may take

a very long time to terminate, we set another deadline parameter

T , and kill the process once the running time exceeds T . During
the experiments, we make sure that no other programs are running

and at any time, only one algorithm is running on one instance.

Also, we only compare the running time in these experiments, so

detailed solution qualities are ignored.

The parameters for the three settings are as follows: 1) small:

n = 5,d = 5,T = 30 seconds, 2) medium: n = 10,d = 10,T =
60 seconds; 3) large:n = 100,d = 100,T = 60 seconds.

For all the settings, we run our algorithm with tol = 10
−8
, and

runAlgorithm 3 twicewith tol = 0.1 and tol = 0.01. The experiment

results are shown in Figure 4.

For the 1000 small instances, although we set a much smaller

tolerance value tol = 10
−8

for our algorithm, our algorithm finishes

on almost all instances (955) within the 30 seconds deadline, Algo-

rithm 3 finishes on only 256 instances when tol = 0.1 and on only

22 instances when tol = 0.01. For medium instances, our algorithm

finishes on 512 of them, while Algorithm 3 does not finish on any

instance within the deadline. And for large instances, no algorithm

ever finishes on any instance within the deadline. It is interesting

that our algorithm either finishes very quickly, or does not finish

after a relatively long time. For example, among the finished 955



(a) Small instances (b) Medium instances

Figure 4: Running time comparison. The y-axis is the cumulative distribution of the running time for the 1000 instances
(i.e., the number of instances finished within the corresponding time period). For large instances, no algorithm can finish the
computation within the 60 seconds deadline, thus are not shown.

(a) Case 1 (b) Case 2

Figure 5: Comparison between the continuous algorithm and our discrete algorithm.

small instances, almost all of them finish within the first 3.5 sec-

onds. This is also true for medium instances. The reason behind

this observation is still unknown. We believe this is closely related

to specific value distributions in the instances.

We also compare the performance of the continuous algorithm

and our discrete algorithm when the value distribution is continu-

ous (see Figure 5). In our experiments, there are two bidders with

different value distributions. We consider two cases. In the first

case, bidder 1’s value follows uniform distribution over the inter-

val [1, 3], and bidder 2’s value follows uniform distribution over

interval [0, 2]. In the second case, bidder 1’s value distribution is

the same while bidder 2’s value follows the distribution below:

G2(v) = 0.25v2,∀v ∈ [0, 2].

To run the discrete algorithm, we first need to convert the con-

tinuous distributions to discrete ones. For each bidder, we split

the support of his value distribution to 120 non-overlapping small

intervals of the same length. For each small interval, we use the

center of it as the representative, and set its probability to be that

of the bidder’s value lying in the interval.

The results of the experiments are shown in Figure 5. Both al-

gorithms give almost the same maximum winning bid and the

minimum winning bid. The probability distribution functions pro-

vided by the two algorithms are also quite similar, meaning that

the discrete algorithm can approximate the solution well with a

fine discretization scheme.

It is interesting that as the bid gets smaller, the “sawtooth” phe-

nomenon becomes more obvious. This is due to the fact that when

the bid is small,vi (b) becomes close to b, and fi (b) is more sensitive

to the change of b as it depends on
1

vi (b)−b
.
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