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ABSTRACT
We consider the problem of how a buyer can optimize his utility if

he can choose his own valuation distribution in a prior-dependent

auction, such as the revenue-optimal auction [18]. The problem is

motivated by and equivalent to a type of the market segmentation

problem [3], where a principal tries to select a subset of agents

(i.e., a market segment) from the set of all agents, each with a

constant valuation, to attend a posted price auction for selling

multiple identical items, in order to maximize the total utilities

of the agents selected into the market segment. Our results are

closed-form solutions in both the single buyer case as well as the

multi-buyer case where several buyers best response to each other.

Interestingly, in the two-buyer case, essentially all commitments

that satisfy a certain condition are equilibria.
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1 INTRODUCTION
In the standard theory of Bayesian mechanism design, it is common

knowledge among the seller and buyers that there is a joint valua-

tion distribution of the buyers. However, there are circumstances

where the buyers are free to choose such a distribution. The central

question studied in this paper is:

Given a revenue-maximizing auctioneer, what is the optimal valua-
tion distribution for the buyers?

Consider the following single buyer example. The seller is a

Myersonian monopolist [18] who commits to the use of the revenue

optimal posted pricing, given the buyer’s valuation distribution.

The buyer can choose any type distribution on [0, 1]. What is the

optimal distribution that maximizes the buyer’s expect utility?

Clearly, having a large distribution, a distribution with a large
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expectation, does not help in this case. For example, if the buyer

has a point mass distribution at 1, he will end up with 0 utility since

the seller will set a posted price at 1. One may wonder then, perhaps,

the best shot for the buyer is a uniform distribution on [0, 1], which

yields an expected utility of 0.125 for the buyer. It turns out that this

isn’t optimal for the buyer either. As we shall show in this paper,

the optimal distribution for the buyer is a piecewise distribution

consisting of a piece of the equal-revenue distribution [12, 13] and

a point mass at 1. Intuitively, an equal-revenue distribution is a

distribution on [c,∞), where c is a positive number. When the

buyer’s value follows the equal-revenue distribution, no matter

what price the seller sets, she will get the same revenue. It is without

loss of generality to assume that the seller will set the lowest price

thus the best price for the buyer. The buyer optimal distribution is

in fact a truncation of the equal-revenue distribution at 1. In this

case, the buyer will have an expected utility of 1/e ≈ 0.36, which is

almost 3 times as higher as the uniform distribution.

The main part of the paper is a closed-form solution for the

multiple-buyer case, where the buyer needs to come up with a good

distribution in order to best respond to the distributions reported by

the other buyers. The seller will still set a posted price (as opposed

to run the Myerson auction) for the mixed distribution reported by

buyers.

1.1 Motivation
The above abstract problem stems from a number of realistic sce-

narios. In a standard online ad scenario, where a principal, say an

advertisement agency (aka, a demand side platform (DSP)) who

represents a population of advertisers, each with a publicly known

constant valuation, needs to select a subset of its advertisers (i.e., a

market segment [3]) to attend a posted price auction for multiple

online impressions. Due to the Myersonian nature (the auctioneer

runs the Myerson auction) of the auction, the principal needs to

carefully select its advertisers according to their valuations in order

to maximize their total utility, a fixed fraction of which becomes her

commission (utility). So the problem becomes the abstract maths

problem described above: how to find the optimal buyer distribu-

tion? The problem also naturally extends to the case where multiple

agencies, each represents a population of advertisers, attend an ad

exchange [2, 16] in which a revenue maximizing posted price is

set to sell multiple units of impressions. Similar examples bound,

ranging from how to select an miner team to exploit a mine, to how

to select a team to build a public project.

1.2 Related work
Perhaps the most relevant work is a recent independent draft [9],

where the authors analyze a single-buyer single-item auction where

the buyer can choose any valuation distribution, with support on



[0,1], and the seller offers a posted price to the buyer. The prob-

lem they study is exactly our problem in the single buyer case. In

contrast, our motivation admits a principal-agent interpretation,

which naturally extends to the multiple-buyer case and we give a

closed-form solution in this more technically challenging case.

Two papers by Burkett [6, 7] analyze a similar setting where

the agent submits his bids through a principal to participate in a

single item auction, due to the fact that the agent can not directly

interact with the seller (say, a publisher). The agent and the principal

then share the profit according to a predefined, fixed rate. In this

paper, we analyze the case where each agent has a publicly known,

constant value, thus the strategic behavior at the agent level is not

considered.

This work also relates to a series of literature that consider the

setting where the buyer can strategically interact with the seller

via repeated auctions. A series of papers [1, 8, 10, 15, 17] focus

on the dynamic and learning aspect of the problem where the

buyer learns to play equilibrium. Roesler and Szentes [21] consider

a buyer’s optimal distribution with fixed expected value under a

“mean-spread” condition. Bergemann et al. [3] consider the setting

that an agent’s prior distribution can be decomposed into a linear

combination of several posterior distributions. They characterize

the range of the combination of buyer and seller surplus that is

implementable by a decomposition. Tang and Zeng [24] consider

a series of prior-dependent auctions that each buyer can report a

“fake distribution”, while each buyer also has his true distribution.

In contrast, our work focus on principal’s optimal distribution with

fixed support and the principal does not have a true valuation

distribution.

A recently well-studied model, called persuasion model, is also

related to this paper. A series of literature [4, 14, 19, 20, 22] study

the general problem of a sender strategically revealing information

based on external signals and give a method to find the optimal

signaling scheme for the sender in a number of realistic scenarios.

Our model allows the principal to reveal any information, thus

fundamentally different from those works in which there is a prior

distribution.

1.3 A summary of results
We now summarize the results we obtain with respect to the buyer

optimal distribution problems we study.

(1) We show that in the single buyer setting, the optimal dis-

tribution consists of an equal-revenue distribution starting

from
1

e and truncated with a point mass at 1. The result is

consistent with the [9] but with a potentially clearer proof.

(2) For the multi-buyer case, we give a closed-form of the sym-

metric equilibrium, in which each buyer’s distribution con-

sists of an equal-revenue distribution starting at ne−
1

n , and

truncated with a point mass at 1.

(3) For the multi-buyer case, we give a characterization of one’s

best response distribution, given any other buyers’ distribu-

tions. Based on characterization, we give a necessary and

sufficient condition of a distribution profile to be an equilib-

rium. In other words, we characterize all equilibria in the

multi-buyer setting.

(4) In the two-buyer case, we show an interesting result that all

commitments [23, 25] with median value e−
1

2 are all equilib-

ria.

2 SETTINGS
Consider an auction where the seller sells a single item to a buyer.

The buyer chooses his cumulative valuation distribution F with

domain S, subject to S ⊆ [0, 1]. The seller set a take-or-leave price

p that maximizes his expected revenue according to F . The goal of
the buyer is to choose F that maximizes his expected utility.

For the ease of representation, we redefine the cumulative func-

tion of a random variable:

Definition 2.1. Given a random variable v , define its cumulative

function F to be

F (v ′) = Prv [v < v
′
]

where the right-hand side represents the probability that the ran-

dom variable v takes on a value less than v ′.

We assume that the buyer will buy the item if his value is exactly

p. So by our redefinition, the seller’s expected revenue is always

p (1 − F (p)), no matter whether F has a point mass at p or not. If

there is no point mass, our redefinition is the same as the standard

definition, F (v ′) = Prv [v ≤ v ′]. If there is a point mass on p, only
the value F (p) is different from the standard definition, and the

set of such inconsistencies is measured zero. In this paper, unless

specified otherwise, all of our results and proofs hold everywhere

except on a measure zero set of values.

Based on Definition 2.1, we are able to define the single buyer

problem:

The single buyer problem.

max

∫
v ∈S

(v − p)+ dF (v )

s .t . (1 − F (v ))v ≤ p (1 − F (p)), ∀v ∈ S

0 ≤ v ≤ 1, ∀v ∈ S

where x+ = max{x , 0}.
By the definition above, we know that if there are multiple opti-

mal reserve prices, the seller will choose the minimum one.

As mentioned, the single buyer problem is motivated by the

following multi-item auction problem:

Problem 1. The seller has M (sufficiently large) identical items
for sale. A principal can choose any number of unit-demand agents
whose valuations are constant and in [0, 1]. Upon observing the set of
selected buyers and their values, the seller sets a price p for one unit of
item in order to maximize revenue. Agents with valuation vi greater
than p are allocated one item and a utility vi − p. Others get nothing
and pay nothing.

The principal aims to maximize the total agents’ surplus it selects.

It is assumed that the whole population of the set of agents is

large enough so that the principal can freely choose agents with

any valuation distribution, either discrete or continuous. The types

of all agents are normalized such that the highest value is 1.

It can be shown that the problem 1 above is equivalent to the

single buyer problem defined earlier. Suppose n agents are chosen,

without loss of generality, one can assume that M = n: if n > M ,



agents whose value are less than theM-th largest value will never

buy an item, and if n < M , we can always hire additional M − n
agents with zero valuation. The seller’s revenue is Mp (1 − F (p))
and the total utility of agents is Ev [(v − p)

+
], if the price is at p

and the agents’ valuations form distribution F . So if we take the

distribution in the single buyer problem as the principal’s action in

problem 1, the two problems are identical.

We then introduce a convenient representation of a distribu-

tion called quantile [5], which we are essential for our technical

derivations.

Definition 2.2. (Quantile). Given a random variable v with cumu-

lative distribution F (v ) and support S, denote q = 1 − F (v ) ∈ [0, 1]
as the quantile of v . The function V (q) = F−1 (1 − q) : [0, 1] 7→ S is
a mapping from the quantile space to value space, and is uniquely

determined by distribution F . 1

The quantile q of a value V (q) can be regarded as the rank of

the value in the distribution and is uniformly distributed in [0,1].

V (q) is decreasing with q, i.e. a larger quantile corresponds to a

smaller value. When we use V , we represent a distribution in the

quantile space, i.e. V (q),q ∈ [0, 1], while we sometimes still use

F to represent the cumulative distribution in the value space, i.e

F (v ),v ∈ S.
We rewrite the single buyer problem in the quantile space: Note

that the seller’s optimal price p is always in the support of the

buyer’s distribution, i.e. p ∈ S, so we can assume that p = V (q∗),
where q∗ is called the reserve quantile.

2

max

∫
1

0

(V (q) −V (q∗))+ dq (1)

s .t . qV (q) ≤ q∗V (q∗), ∀q ∈ [0, 1]

0 ≤ V (q) ≤ 1, ∀q ∈ [0, 1]

We then give a definition of the equal-revenue distribution as

mentioned in the introduction, of which most of our results take

the form.

Definition 2.3. The equal-revenue distribution [13] has cumula-

tive function

F (v ) = 1 − c/v,v ∈ [c,+∞)

where c > 0 is a constant.

Equivalently, in the quantile space,

V (q) = c/q,q ∈ (0, 1].

The equal-revenue distribution has the property that the seller’s

revenue is indifferent for any posted-price in its support.

3 THE SINGLE BUYER CASE
In this section, we solve the single buyer problem.

Theorem 3.1. The following V maximize the buyer’s utility for
the single-buyer problem.
• V (q) = 1, ∀0 ≤ q ≤ 1

e
1
For the case where the distribution has a point mass at value v0 with probability p0 ,
V (q ) is defined to be v0 for all q ∈ [1 − F (v0 ), 1 − F (v0 ) + p0]
2
This formalization is well-defined even when there is a point mass. However in the

value space F could be non-differentiable. We can still assume F to be differentiable

because one can get the same results using Lebesgue integral. We omit the details here.

• V (q) = 1

eq , ∀
1

e < q ≤ 1

Equivalently, we write the distribution in the value space:

• F (v ) = 0, ∀v ≤ 1

e
• F (v ) = 1 − 1

ev , ∀
1

e < v ≤ 1

• F (v ) = 1, ∀v > 1

To prove the theorem, we first show that it is without loss of

generality to only consider distributions such that the seller sets the

price at V (1) (the minimum value of the support). Then we prove

that the optimal distribution V is only determined by the value of

V (1). That is, the buyer’s utility can be written as a function ofV (1),
so we can compute the optimal V (1) by the first-order condition.

Lemma 3.2. It is without loss of generality to only consider the
buyer’s distribution V such that the seller set the price at V (1) (the
minimum value in the support)

Proof. Suppose that the buyer chooses the distribution V and

we assume that the reserve quantile q∗ < 1. Then we construct a

new distribution V ∗ as follows:

• V ∗ (q) = V (q), ∀0 ≤ q ≤ q∗

• V ∗ (q) =
q∗V (q∗ )

q , ∀q∗ < q ≤ 1

First the monotonicity of V ∗ (q) is satisfied so V ∗ is a distribution.
Since q∗ ∈ argmaxq qV (q), so 1 ∈ argmaxq qV

∗ (q) and by defini-

tion, the monopoly price is V ∗ (1) for V ∗. Also, V ∗ produces the
same utility asV for any q ∈ [0,q∗], while for q ∈ (q∗, 1), the utility
from V is 0 and from V ∗ is a non-negative amount V ∗ (q) −V ∗ (1).
Thus the function V ∗ weakly dominates V . □

Lemma 3.3. Given that the seller sets the price at p, it is without
loss of generality to only consider the buyer’s distribution V with the
following form:
• V (q) = 1, ∀0 ≤ q ≤ p

• V (q) =
p
q , ∀p < q ≤ 1

Proof. First the monotonicity ofV (q) is satisfied soV is a distri-

bution, and by Lemma 3.2 it is without loss of generality to assume

p = V (1), so

qV (q) ≤ V (1) ⇒ V (q) ≤ V (1)/q, ∀q ∈ (0, 1].

Otherwise the seller prefers to set a price at some V (q) other than
V (1).

By definition we also have V (q) ≤ 1,∀q ∈ [0, 1], so V (q) ≤
min

{
1,v (1)/q

}
Note that the utility function (1) is monotone increasing with

each V (q) for any q ∈ [0, 1], so the lemma is proved. □

With the above two lemmas, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. By Lemma 3.2 and Lemma 3.3, we only

need to determine V (1)
The objective function in (1), denoted byU , is

U =

∫
1

0

(V (q) −V (1))+ dq

=

∫ V (1)

0

(1 −V (1)) dq +

∫
1

V (1)
(V (1)/q −V (1)) dq

= V (1) lnV (1).



To maximize U , we must have
dU

dV (1) = 0 ⇒ V (1) = 1

e . Thus the

theorem is proved. □

We call this distribution the buyer-optimal distribution, which
consists of an equal-revenue distribution starting from

1

e and a

point mass at 1. Figure 1 shows the redefined cumulative function

of the buyer-optimal distribution.

Figure 1: Cumulative function of buyer-optimal distribution

We derive the following interesting corollaries of the buyer-

optimal distribution:

Corollary 3.4. In a single item auction with one buyer, if the
buyer chooses the buyer-optimal distribution, then the buyer’s utility
equals to the seller’ revenue.

In this case, both the buyer’s utility and the seller’s revenue is

1/e fraction of the maximum value in the support.

From the proof of Theorem 3.1, we know the closed-form of

the buyer’s optimal distribution given the seller’s monopoly price.

Thus we derive the following:

Corollary 3.5. In a single item auction with one buyer, if the
seller’s monopoly reserve price is no less than 1/e fraction of the
maximum value in the support, then the seller’s revenue is no less
than the buyer’s utility. The number 1/e is tight.

Proof. We assume, without loss of generality, that themaximum

value in the support is 1. Suppose that the buyer’s distribution isV ,

the monopoly reserve price is p, and q0 is the reserve quantile. So
the seller’s revenue is q0p.

Similar to the proof of Lemma 3.2, for any 0 < q ≤ q0, we have

qV (q) ≤ pq0 ⇒ V (q) ≤
q0p

q
.

So V (q) ≤ min

{
1,

q0p
q

}
.

In this case, the buyer’s optimal utility is

∫
1

0

(V (q) − p)+ dq

=

∫ q0p

0

(1 − p) dq +

∫ q0

q0p

(
q0p

q
− p

)
dq

= q0p (1 − p) − (q0 − q0p)p +

∫ q0

q0p

q0p

q
dq

= q0p lnp.

So when the seller’s revenue is no less than the buyer’s utility:

q0p ≥ qp lnp ⇔ p ≥
1

e
.

Thus the corollary is proved. □

So if the seller ignores all values of the buyer that less than 1/e
fraction of the maximum value in the support and runs Myerson

auction, then the seller can guarantee his profits to be at least

the buyer’s. It is obvious that this mechanism is truthful and more

efficient than the trivial mechanism that always sets the price equals

to half of the maximum value in the support, which can achieve

the same goal.

4 THE MULTI-BUYER CASE
In this section, we generalize the single buyer case to the multi-

buyer case:

Consider an auction where the seller sells n identical items to n
buyers. Each buyer chooses his cumulative valuation distribution

Fi on [0, 1]. The seller chooses an anonymous price p for each item.

Agents with value larger that p buy one unit of item and pay the

price. The goal of the seller is to maximize his expected revenue

subject to the total allocation probability over n buyers no more

than 1. Formally,

The multi-buyer game. Given F1, F2, ..., Fn with domain S ⊆
[0, 1],

p = argmax

p′
p′

n∑
i=1

(1 − Fi (p
′)) (2)

subject to
n∑
i=1

(1 − Fi (p)) ≤ 1.

Principle i’s utilityUi (F1, ..., Fn ) is

Ui (F1, ..., Fn ) =

∫
1

0

(Vi (q) − p)
+
dq. (3)

Definition 4.1. A buyer i’s distribution Fi is a best respond over
other buyers’ distributions F−i if for all distribution F ′i on [0, 1], in

the multi-buyer game,

Ui (Fi , F−i ) ≥ Ui (F
′
i , F−i ).

Definition 4.2. Adistribution profile (F1, ..., Fn ) is aNash-equilibrium
if for each buyer i , Fi is a best response.

Recall that Fi represents the cumulative function of buyer i’s dis-
tribution in the value space andVi represent the same distribution in

the quantile space. Here the function 1−Fi is the inverse function of
Vi . Actually, for any valuev ,V

−1
i (v ) = Prv ′∼Fi [v

′ ≥ v] = 1−Fi (v ).
Also note that

argmax

p′
p′

n∑
i=1

(1 − Fi (p
′)) =

1

n
p′

(
1 −

∑n
i=1 Fi (p

′)

n

)
.

so for the seller it is equivalent to set the optimal posted price

for the mixed distribution reported by buyers, but subject to the

constraint that the allocation probability is no more than
1

n .

The multi-buyer game is motivated by the following problem:



Problem 2. The seller has at most M (sufficient large) identical
items for sale. There are n principals. Each principal can choose any
number of unit-demand agents whose values are between 0 and 1.
Upon observing all agents from all principals, the seller then sets a
common price p for one unit of item in order to maximize revenue,
subject to resource feasibility. Agents (not necessarily belong to the
same principal) with valuation greater than p are allocated one item
and produces a utility for his principal that equals his value minus p.
Others get nothing and pay nothing.

Similar to the single buyer case, it is without loss of generality to

only consider that each principal chooses exactM agents in problem

2. For a sufficiently large population, each principal’s action in

Problem 2 is to choose a distribution Fi .
When the seller sets the price p,M (1 − Fi (p)) agents from prin-

cipal i are allocated, so the seller’s revenue get from buyer i is
Mp (1 − Fi (p)). Thus the total revenue of the seller is

Mp
n∑
i=1

(1 − Fi (p)).

So the objective function (2) follows.

The constraint in the multi-buyer problem, called feasibility
constraint, is due to the resource feasibility: in problem 2, since

the total number of winners is at mostM , we have:

M
n∑
i=1

(1 − Fi (p)) ≤ M .

Thus the constraint follows.

Note that if

∑
i (1 − Fi (1)) > 1, the feasibility constraint can

be never satisfied. This case is trivial as the seller may randomly

allocate the item to agents with value 1. We suppose that it is not

the case.

4.1 Equilibrium analysis
In this subsection, we give an equilibrium of the multi-buyer game.

This equilibrium is the unique symmetric equilibrium if we ignore

the values that less than the price given by the seller. (These values

do not affect the outcome.)

Theorem 4.3. Each buyer chooses the following distribution V ∗ is
an equilibrium of the multi-buyer game.
• V ∗ (q) = 1, ∀ 0 ≤ q ≤ v0

n
• V ∗ (q) = v0

nq , ∀ q >
v0

n

where v0 = e−
1

n

Equivalently, we write the distribution in the value space:
• F (v ) = 0, ∀v ≤ v0

n
• F (v ) = 1 −

v0

nv , ∀
v0

n < v ≤ 1

• F (v ) = 1, ∀v > 1

Intuitively, by the symmetry, at the equilibrium each buyer

should consume 1/n fraction of the goods, i.e., 1 − Fi (p) =
1

n .

We prove the optimality by the first-order condition.

Proof of Theorem 4.3. Suppose that allV−i ’s are equal toV
∗
in

Theorem 4.3, we prove that buyer i’s distribution Vi = V
∗
is a best

response. First, given that the seller’s optimal price is p = V ∗ (q0)
(obviously p ≤ 1), then the following two constrains must hold:

(1) 1 − Fi (p) ≤ 1 − (n − 1)q0
(2) Vi (q) (q + (n − 1) (1 − F ∗ (Vi (q)))) ≤ p ((n − 1)q0 + 1 − Fi (p)),

for any q

Where F ∗, Fi represent the distribution V ∗,Vi in the value space

respectively. Constraint (1) is due to fact that the total allocation

probability is nomore that 1 in themulti-buyer game, and constraint

(2) is to ensure that the seller’s optimal price is p.
By definition in Theorem 4.3, for any v < 1, 1 − F ∗ (v ) = v0

nv . By

combining constraint (1) and (2) we have

Vi (q) (q + (n − 1)[1 − F ∗ (Vi (q))]

= qVi (q) +
(n − 1)v0

n
≤ p[(n − 1)q0 + 1 − Fi (p)]

≤ p = V ∗ (q0) =
v0
nq0
.

So

Vi (q) ≤
v0
qn

(
1

q0
− (n − 1)

)
.

Agent i’s utilityUi (Vi ,V
∗
−i ) is∫

1−Fi (p )

0

(Vi (q) − p) dq

≤

∫
1−Fi (p )

0

(
min

{
v0
qn

(
1

q0
− (n − 1)

)
, 1

}
− p

)
dq

≤

∫
1−(n−1)q0

0

(
min

{
v0
qn

(
1

q0
− (n − 1)

)
, 1

}
− p

)
dq.

In particular, the equalities are reached if

Vi (q) = min

{
v0
qn

(
1

q0
− (n − 1)

)
, 1

}
. We assume this is the case.

Define qt to be the largest quantile such that Vi (qt ) = 1, so

v0
qtn

(
1

q0
− (n − 1)

)
= 1.

We get

qt =
v0
n

(
1

q0
− (n − 1)

)
.

So far we have obtained the closed-form of the best response

when the optimal price is given. Next we determine the optimal q0
for buyer i .

Now buyer i’s utilityUi is

Ui =

∫ v
0

n

(
1

q
0

−(n−1)
)

0

(
1 −

v0
nq0

)
dq

+

∫
1−(n−1)q0

v
0

n

(
1

q
0

−(n−1)
) (

v0
nq

(
1

q0
− (n − 1)

)
−

v0
nq0

)
dq

=
v0
n

(
1

q0
− (n − 1)

)
ln

nq0
v0
.

Take derivative ofUi with respect to q0:

dUi
dq0
=
v0
n

*
,

(
1

q0
− (n − 1)

)
1

q0
−

1

q2
0

ln

nq0
v0

+
-
.



Let the formula above equal to zero andwe getq0 =
1

n . This solution

is unique since the right side times q2
0
is decreasing with q0. By the

first-order condition we conclude that in buyer i’s best response
q0 =

1

n . (We omit the verification of the second-order condition).

Plug q0 =
1

n into the formula of Vi (q) and we get Vi (q) =

min

{ v0

qn , 1
}
, so we conclude that Vi = V

∗
is a best response. Thus

by the symmetry the theorem is proved. □

Figure 1 shows the revenue curve [5] of the value distribution of

allM winners (buyers who buy an item), in the symmetric equilib-

rium. If n = 1, the distribution is the buyer-optimal distribution. As

n → ∞, the distribution converges to the point mass distribution

at 1 and the seller’s revenue approaches 1.

Figure 2: Revenue curves of the winners’ distribution

4.2 Best response analysis
In this section we give a characterization of a buyer’s best response

given other buyers’ distributions. Based on this, we are able to

find all equilibria. The idea is that, given the seller’s optimal price

p, we can get a closed-form best response of the buyer. Then we

determine p that maximize the buyer’s utility by the first-order

condition.

We then state our main theorem of this section. For simplicity,

we only state our results for the case where n = 2. All techniques

can be naturally extend to more general cases.

Theorem 4.4. Suppose buyer 2’s distribution is V2, if V2 (0) > 1/e
then the following distribution is a best response of buyer 1:

V1 (q)[q + 1 − F2 (V1 (q))] = V2 (q
∗
0
), ∀1 − q∗

0
≤ q ≤ q∗t

V1 (q) = 1, ∀0 ≤ q ≤ q∗t

V1 (q) = 0, otherwise

where q∗
0
is given by 1 − q∗

0
= − lnV2 (q

∗
0
) and q∗t is given by

q∗t = V2 (q
∗
0
) + F2 (1) − 1. F2 is the cumulative function of distribution

V2 in the value space.
If V2 (0) ≤ 1/e , then the best response of buyer 1 is the buyer-

optimal distribution

(Note that when V2 (0) > e−1, the function 1 − x + lnV2 (x ) is
monotone and 1+ lnV2 (0) > 0 , so there is a unique root q0. We will

later prove that the first equation has a unique solution of V1 (q)
subject to the feasibility constraint.)

In order to prove Theorem 4.4, we first define a functionX (q),q ∈
[0, 1], which is essentially the best responds of buyer i .

Definition 4.5. Given continuous distributionsV−i andR, letX (q)
to be the solution to the following optimization problem:

max x

s .t . x *
,
q +

∑
−i

(1 − F−i (x ))+
-
≤ R (4)

x ≤ 1

Proposition 4.6. X (q) has following properties
• property 1: X (q) is continuous and monotone decreasing with
respect to q
• property 2: If

X (q) *
,
q +

∑
−i

(1 − F−i (X (q)))+
-
< R,

then X (q) = 1

• property 3: If there exists a distribution Vi such that R is the
optimal revenue in the multi-buyer game with V1, ...,Vn , then
X (q) ≥ Vi (q), for any q ∈ [0, 1].

Proof. Note that when x = 0 the left side of (4) is 0, and by the

continuity of F ′i s there always exists a optimal solution X (q) for
any q.

Proof of property 1: The continuity follows from the continuity

of Fi . For the monotonicity, suppose by contradiction that X (q1) <
X (q2) and q1 < q2, we have

X (q2) *
,
q1 +

∑
−i

[1 − F−i (X (q2))]+
-

<X (q2) *
,
q2 +

∑
−i

[1 − F−i (X (q2))]+
-

≤R,

which mean that when q = q1, it is better to choose X (q) to be

X (q2) rather than X (q1), a contradiction.
Proof of property 2: If the condition is not stratified, it is better

to replace x with x + ϵ and (4) still holds, since left side of (4) is

continuous with respect to x .
Proof of property 3: For any q, when x = Vi (q) the left side of

(4) is the seller’s revenue when the price equals to Vi (q). By the

definition of R, (4) is satisfied when x = Vi (q). So by the maximality

of X (q) we have X (q) ≥ Vi (q). □

We then prove that it is without loss of generality to only consider

the case where the feasibility constraint is binding:

Lemma 4.7. If Vi is a best response to V−i , then
n∑
i=1

(1 − Fi (p)) = 1,

where p is a maximizer of (2), Fi represents the distribution Vi in the
value space.



Proof. GivenV−i and the seller’s optimal price p, we assume on

the contrary thatVi is a best response toV−i and
∑n
i=1 (1−Fi (p)) < 1.

We then prove that buyer i can deviate from Vi and his utility

increases. Here we assume that each F−i is a continuous function.
3

Consider the following function

G (q) = q +
∑
−i

[1 − F−i (X (q))], q ∈ [0, 1].

By property 1 in Proposition 4.6,G (q) is strictly increasing in q. By
property 3, X (1 − Fi (p)) ≥ Vi (1 − Fi (p)) = p, So

G (1 − Fi (p)) ≤ 1 − Fi (p) +
∑
−i

[1 − F−i (p)] < 1.

Also note that G (1) ≥ 1, by the continuity of function G, there
exists a q0 ∈ (1 − Fi (p), 1] such that G (q0) = 1. We set q0 to be the

largest quantile such that G (q0) = 1.

Then we reconstruct buyer i’s distribution V ∗i to be:

V ∗i (q) = X (q), ∀0 ≤ q ≤ 1. (5)

i) First, by property 3 we have V ∗i (q) ≥ Vi (q),∀q ∈ [0, 1], and by

property 1 we have V ∗i (q) is decreasing in q, so V
∗
i is a distribution.

ii) We then prove that the seller sets a new optimal price at

V ∗i (q0). By property 2 when q = q0 and x = X (q0) either the left
side of (4) equals to R or X (q0) = 1.

In the former case, if the seller’s new optimal price p′ < V ∗i (q0),
then 1 − F ∗i (p

′) > q0 so G (1 − F ∗i (p
′)) > 1, which means that

1 − F ∗i (p
′) +

∑
−i

[1 − F−i (p
′)] > 1

violating the constraint.

If V ∗i (q0) < p ≤ Vi (0), let q = 1 − F ∗i (p
′) in (4), since p′ ≥

V ∗i (q) = X (q) is a solution of (4), we have

p′ *
,
1 − F ∗i (p

′) +
∑
−i

[1 − F−i (p
′)]+

-
≤ R.

If p > Vi (0), then 1 − F ∗i (p
′) = 0, we also have

p′ *
,

∑
i
(1 − Fi (p

′))+
-
= p′ *

,

∑
−i

(1 − F−i (p
′))+

-
≤ R

which means that the seller’s revenue does not exceed R in this case.

Since the left side of (4) is R when q = q0 and x = X (q0) = V
∗
i (q0),

the seller’s revenue is maximized when setting the price at V ∗i (q0).
In the later case, for the same reason as above the seller can not

choose any price p′ < 1, also the seller’s revenue is zero when he

chooses any price p′ > 1. So it is optimal for the seller to set the

price equal to 1.

iii) We then compare V ∗i (q0) and p. By definition

p *
,

n∑
i=1

(1 − Fi (p))+
-
= R.

3
If the continuous condition does not hold for some distribution F at value v , we
replace F on the interval (v, v + ϵ ) by a straight line (v, F (v )), (v + ϵ, F (v + ϵ )).
Then the new distribution has a continuous cumulative function and converges to the

original distribution as ϵ approaches to 0. Similar approaches are applied in [11]

If p < V ∗i (q0), as the seller set the price at V ∗i (q0) for (V ∗i ,V−i )
rather than p, we have

p *
,
1 − F ∗i (p) +

∑
−i

[1 − F−i (p)]+
-
< R.

Combining the two formulas above we have 1 − F ∗i (p) < 1 − Fi (p).
However, since V ∗i (q) ≥ Vi (q) holds for any q, we also have 1 −

F ∗i (p) ≥ 1 − Fi (p), contradiction. So V
∗
i (q0) ≤ p

Combining i), ii), iii), q0 > 1− Fi (p) and recall the buyer’s utility
function in (3), buyer i is better to deviate to V ∗i , thus proves the
lemma. □

From the proof of Lemma 4.7, it is straightforward to derive the

following propositions:

Proposition 4.8. Given V−i and R,
i) there exists a q0 such that G (q0) = 1.
ii) for any q such that q0 < q and X (q) < 1, X (q) is the unique

solution of the following equation:

x *
,
q +

∑
−i

(1 − F−i (x ))+
-
= R

if q +
∑
−i (1 − F−i (x )) ≤ 1.

Proof. The existence of q0 follows fromG (0) < 1 andG (1) ≥ 1.

By Proposition 4.6 X (q) is a feasible solution of the equation and

is continuous.

To prove the uniqueness, we assume on the contrary that there

exists a quantile q1, such that there exists another solution x1 of
the equation when q = q1. By the definition of X (q1), we have

x1 < X (q1)
If x1 ≥ R, since X (q0) = R, we can write it as x1 = X (q2) and

q1 < q2 ≤ q0, so

X (q2) *
,
q1 +

∑
−i

(1 − F−i (X (q2)))+
-
= R.

Since X (q2) is a solution of equation when q = q2, we have

X (q2) *
,
q2 +

∑
−i

(1 − F−i (X (q2)))+
-
= R.

So q1 = q2. A contradiction.

If x1 < R, thenq1+
∑
−i (1−F−i (x1)) > 1, violating the constraint.

Thus the proposition is proved. □

The uniqueness of the solution in the first equation in Theorem

4.4 is proved.

From the construction of (4), we also get the following proposi-

tion:

Proposition 4.9. Given V−i seller’s optimal price p, then p = R,
the seller’s revenue, and (5) is a best response of buyer i .

Proof. By Lemma 4.7,

p = p *
,

∑
i
(1 − Fi (p))+

-
= R.

For each quantile q, by the definition of X (q), it is the maximum

value in Vi (q)’s feasible domain, and Vi (q) = X (q) is a distribution.
So it is a best response. □



We then prove Theorem 4.4.

Proof of Theorem 4.4. For the case V2 (0) > e−1:
Given that the seller’s the optimal price p. we construct buyer

1’s best response V1.
If p < V2 (0), we assume that p = V2 (q0)

4
, By Lemma 4.7, we

assume, without loss of generality, that V1 (1 − q0) = p = V2 (q0).
Also, by proposition 4.9, V1 (q) satisfies the following:

V1 (q) (q + 1 − F2 (V1 (q))) = V2 (q0), ∀1 − q0 ≤ q ≤ qt (6)

V1 (q) = 1, ∀0 ≤ q ≤ qt

where qt is the smallest quantile such thatV1 (qt ) = 1, given by the

following equation:

qt = V2 (q0) + F2 (1) − 1.

So buyer 1’s utility is

U1 =

∫ qt

0

(1 −V2 (q0)) dq +

∫
1−q0

qt
(V1 (q) −V2 (q0)) dq

= qt − (1 − q0)V2 (q0) +

∫
1−q0

qt
V1 (q) dq.

Take derivative ofU1 with respect to q0 and use the Leibniz formula

we have

dU1

dq0
= (q0 − 1)V

′
2
(q0) +

∫
1−q0

qt

dV1 (q)

dq0
dq. (7)

We define the multivariate function G (v (q),q) to be the left side of

(6), then

G (V1 (q),q) = V2 (q0).

Note that q0 and q are independent, taking derivative with respect

to v0
∂G

∂V1 (q)
·
dV1 (q)

dq0
= V ′

2
(q0).

Then taking derivative with respect to q

∂G

∂V1 (q)
·V ′

1
(q) +

∂G

∂q
= 0.

Since
∂G
∂q = V1 (q), combine the two formulas above together we

have

dV1 (q)

dq0
= −

V ′
2
(q0)V

′
1
(q)

V1 (q)
.

Plug this into (7) and we get

dU1

dq0
= V ′

2
(q0)

(
q0 − 1 −

∫
1−q0

qt

V ′
1
(q)

V1 (q)
dq

)
= V ′

2
(q0) (q0 − 1 − lnV2 (q0)).

The last equality holds since we assume that V1 (1 − q0) = V2 (q0)
and V1 (qt ) = 1.

So the optimal q0 is given by the first order condition:

q0 − 1 − lnV2 (q0) = 0.

If p ≥ V2 (0), the problem degenerates to the single buyer case. By

the proof of Theorem 3.1, buyer 1’s maximum utility is decreasing

with p when p > e−1, thus less than the case when p = V2 (0), which

4
Note that here the q0 is the reserve quantile of buyer 2, which is different from that

in Lemma 4.7, while 1 − q0 corresponds to the reserve quantile of buyer 1

equals to the utility in this proof when p = V2 (0), therefore also
less than the utility when p = V2 (q0).

For the case V2 (0) ≤ e−1:
IfV1 equals to the buyer-optimal distribution, of which the lowest

value in the support is e−1, then buyer 1 can consume all goods.

Also it is obvious that one’s utility in the multi-buyer game is

dominated by the maximum utility in the single-buyer problem.

So the buyer-optimal distribution is the best response. Thus the

theorem is proved. □

Note that best response V1 (q) is unique for the part q ≤ 1 − q0.
Following the proof of the Lemma 4.4, we get following results:

Proposition 4.10. In all equilibria, the seller sets the same price
and yields the same revenue. Each buyer consumes 1

n fraction of total
items.

Proof. We only prove the case where n = 2. By Lemma 4.4, we

have

1 − q0 = − lnV2 (q0)

and similarly by computing the best response of buyer 2 we have

q0 = − lnV1 (1 − q0).

Since V2 (q0) = V1 (1 − q0), we have q0 =
1

2
, and p = V2 (q0) = e−

1

2 .

The seller’s revenue is always e−
1

2 . □

Theorem 4.11. A distribution profile (F1, F2) is an equilibrium if
and only if

F1 (
1

2

) = F2 (
1

2

) = e−
1

2

v (2 − F1 (v ) − F2 (v )) = e−
1

2 , ∀e−
1

2 ≤ v ≤ 1

v (2 − F1 (v ) − F2 (v )) < e−
1

2 , ∀v < e−
1

2 .

Proof. Consider the following equation:

x (q + 1 − F2 (x )) = e−
1

2

e−
1

2 ≤ x ≤ 1.

For any e−
1

2 ≤ v ≤ 1, when q = 1− F1 (v ), by Proposition 4.8, x = v
is the unique solution.

The “if" direction follows from the fact that x = v is a solution

and Proposition 4.9, this solution is a best response. So F1 is a best
response to F2. Similarly, F2 is a best response to F1.

The “only if " direction follows from the uniqueness of the solu-

tion and Proposition 4.10. □

Corollary 4.12. If we ignore the values that less than the re-
serve price, then equilibrium in Theorem 4.3 is the unique symmetric
equilibrium.

The results also show that, if we consider the Stackelberg version

of this game, where the leader first choose a distribution, then the

follower chooses a best response to the leader’s distribution, then

any distribution of the leader satisfying that the median value

equals to e−
1

2 results in a Nash-equilibrium.
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