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ABSTRACT
We consider an auction setting where a seller sells one item to sev-

eral buyers. Before a buyer’s type is realized, he can commit himself

to a so-called signal scheme. Mathematically, a signal scheme can

be regarded as a linear decomposition of his prior type distribution

into a probability distribution over a set of posterior distributions,

each of which the seller can use a revenue optimal auction tailored

for that distribution. It is known, from the literature of Bayes per-

suasion, that such signal schemes can lead to utility increase for

both the seller and the buyers.

Our goal, is to analyze how a buyer should signal his distribution,

given that other buyers may also signal their distributions. In other

words, we want to find an equilibrium profile of signal schemes.

We obtain the closed-form solution for the single buyer case

with regular distributions, and the multiple buyers case with sym-

metric type distributions under certain conditions. To prove our

technique results, we also obtain some interesting intermediate

results. In particular, we show that, if each buyer’s signal scheme is

to decompose his prior distribution into a set of posteriors that has

the same virtual value function (in the exact sense of Myerson’s

virtual value function), his expected utility is equal to his utility

in a first price auction game where his bidding function is always

his virtual value function. Furthermore, perhaps surprisingly, we

show that, certain distributions, including the uniform distribution,

satisfy the property that every buyer’s optimal signal scheme is

indeed to decompose the prior into a set of posteriors that has the

same virtual value function. As a result, we give the closed-form of

an equilibrium profile of signal schemes for these cases.
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1 INTRODUCTION
1.1 Problem description
Consider a monopoly pricing setting where a seller sells an item to

a buyer to maximize revenue. They share the common knowledge

that the buyer’s type is drawn from the uniform distribution among

[0, 1]. It is known from Myerson’s theory [18] that the seller’s

strategy is to set a posted price at 0.5.

Now suppose, before the buyer’s type is reported to the seller,

he can reveal extra type information to the seller by connecting his

type distribution to a set of publicly observable random variable

called signals (E.g., this can be a test on the quality of the good): in

particular, his type is lowered to a uniform distribution on [0, 0.5]

if the signal is observed to be low, while a uniform distribution on

[0.5, 1] if the signal is observed to be high. Furthermore, the chances

of the signal being low or high are equally likely. Note that, the

posterior type distributions are consistent with the prior common

knowledge that the buyer’s type distribution is from uniform [0, 1].

Given the buyer’s commitment on such information revelation

strategy, the seller is now able to conditional the sale price on the

signal realization: to maximize revenue, she will set price to be 0.25

when she sees low and set price to be 0.5 when high. Corempared

to the previous case without signaling, both the seller and the

buyer strictly benefit by 1/16 respectively. It is known from recent

literatures that the optimal signaling scheme for the buyer is to

decompose his prior distribution into an infinite set of equal revenue
distributions. Bergemann et al. [2] provide an existence proof to this

result on the continuous distribution case. Later Shen et al. [23]

provide a constructive proof to the general case.

In this paper, we extend the above analysis to the more general

auction setting where a seller may sell an item to multiple buy-

ers and each buyer may adopt a signal scheme as described early.

Our goal, is to analyze how a buyer should signal his distribution,

given that other buyers may also signal their distributions and the

seller will use a revenue maximizing auction [18] on the posterior

distributions.

1.2 Motivation and related works
The example described above is at the intersection of two important

lines of economics research. The first investigates the power and

limit of price discrimination [2, 19], where the buyer in the previous

example is interpreted as a population, withinwhich each individual

has a deterministic type. The seller can segment the population

into different markets (thus a sets of distributions) based on the

characteristics of individuals in the population and price differently

for each market (aka. the third degree of price discrimination). The
impact of different segmentation strategies has been investigated

and the set of (seller, buyer) utility profiles have been characterized



under various scenarios. We refer readers to Bergemann et al. [2]

for a comprehensive survey on price discrimination.

The second line of research concerns the power of signaling in

the so-called persuasion model [8–11, 15]. This topic was initiated

by the recent celebrated work of Kamenica and Gentzkow [15],

where they study the general problem of a sender strategically

revealing information based on external signals and give a method

to find the optimal signaling scheme for the sender in a number of

realistic scenarios. The basic model has been extended to a number

of scenarios in the past five years: Gentzkow and Kamenica [11]

consider the situation where sender’s payoff also depends on the

signal cost. Bhattacharya and Mukherjee [3], Chen and Olszewski

[5], Gentzkow and Kamenica [13] study the simultaneous-move

game where multiple senders simultaneously send signals. Dughmi

[8] study the hardness of designing optimal information structures

in zero-sum game, while Xu et al. [29] obtain hardness results of

designing signal structures in Stackelberg Games. Gentzkow and

Kamenica [12] proposes new approaches to the Bayesian persuasion

problem.

Our problem, described in their terminology, is to find buyers’

equilibrium profile of signaling schemes in the Myerson auction.

The signalling problem has also been studied in the auction

scenario by Daskalakis et al. [7] and Bro Miltersen and Sheffet

[4]. Both works consider the case where the seller has additional

information than the buyer and how the seller can strategically

reveal this additional information (together with designing the

auction format itself in Daskalakis et al. [7]) to maximize revenue.

In contrast, in our model, both parties share the same information

and the buyer designs the signal.

Prior distributions play a key role in auctions with incomplete in-

formation. In the same spirit, Roesler and Szentes [20] analyze how

to optimally spread a prior distribution with mean value reserved.

Tang and Zeng [28] study the manipulation of prior distributions.

Condorelli and Szentes [6], Shen et al. [22] analyze the optimal

prior distribution for the buyer. In contrast, our model study the

decomposition of prior distributions.

1.3 Our contributions
To best describe our contributions, let us start by reviewing thework

of Bergemann et al. [2] and Shen et al. [23], which aim to understand

the impact of signaling in the one buyer case, exactly the same as

the setting described at the beginning of the paper. Bergemann

et al. [2] characterize, for any discrete distribution, the set of (seller,

buyer) utility profiles achievable by some buyer signaling scheme.

It is not hard to see that, for any signaling scheme, the utility

profile must necessarily satisfy the following three bounds: 1) the

buyer’s utility must be nonnegative, following from the individual

rationality constraint; 2) the seller’s utility must be no less than the

case where she does not receive any signal at all; and 3) the sum of

both parties utilities must be no higher than the value of the item.

The main effort and result of these papers is to show that these three

bounds are actually sufficient, in that they completely characterize

all possible profiles achievable by any signaling scheme. Shen et al.

[23] further extend this result by giving a constructive proof that

applies for both discrete and continuous type distributions.

In this paper, we extend the analysis of the above problem to

the case of multiple buyers. Our analysis is enabled by a series of

innovative findings of the problem.

• We show that a buyer’s utility can be written as a linear

combination of the virtual values of posterior distributions.

We further characterize the conditions that a set of such

virtual values can be implemented by a signal scheme.

• Base on this property, we give an alternative proof for re-

sults in Bergemann et al. [2] for the single buyer case, the

maximum utility is the expected social welfare minus the

seller’s optimal revenue on the prior distribution.

• We show that, if each buyer’s signaling scheme is to decom-

pose his prior distribution into a set of posteriors that has

the same virtual value function (in the exact sense of My-

erson’s virtual value function), his expected utility is equal

to his utility in a first price auction game where his bidding

function is always his virtual value function.

• We further show that, certain distributions, including the

uniform distribution, satisfy the property that every buyer’s

optimal signal scheme is indeed to decompose the prior into

a set of posteriors that has the same virtual value function.

2 SETTING
Suppose the seller has a single item for sale to n buyers. Each buyer

i’s value vi is drawn independently from a distribution Fi , called
the prior distribution, with support Supp(i) and density function

fi .
1
A signal scheme Ωi = (Ti ,πi ) for each buyer i consists of:

• a set (finite or infinite) of signals Ti ;
• a signal distribution πi : Supp(i) 7→ ∆(Ti ), where ∆(Ti )
denotes the probability space of Ti .

DefineT = T1 × ...×Tn . For each signal ti ∈ Ti of buyer i , define
Fi (·|ti ) to be the distribution, called posterior distribution, of random
variable vi given signal ti . We use Supp(ti ) and fi (·|ti ) to denote

the support and the density function of Fi (·|ti ) respectively. By
Bayes rule,

fi (vi |ti ) =
fi (vi )πi (ti |vi )

P(ti )
=

fi (vi )πi (ti |vi )∫
v ′
i ∈Supp(i)

fi (v
′
i )πi (ti |v

′
i ) dv ′i

,

where P(ti ) denotes the probability of signal ti .
Upon a signal profile t = (t1, ..., tn ) for n buyers is realized by the

nature, the seller runs an auction, which consists of an allocation

rule xi : Rn+ 7→ [0, 1] and a payment rule pi : Rn+ 7→ R, based
on the posterior distributions Fi (·|ti ). We use xi (b|t) and pi (b|t) to
denote the allocation rule and the payment rule given signal profile

t and a bid profile b. We assume that the seller always optimizes

his revenue, and thus runs Myerson auction based on posterior

distributions. Due to the truthfulness of Myerson auction, when the

value profile is v = (v1, ...,vn ), buyer i’s utility is xi (v|t)vi −pi (v|t).
Define ϕi (vi |ti ) to be the virtual value of vi with respect to the

posterior distribution Fi (·|ti ), i.e.

ϕi (vi |ti ) = vi −
1 − Fi (vi |ti )

fi (vi |ti )

1
Throughout the paper, we consider continuous distributions that do not contain a

point mass.



Similarly, define ϕi (vi ) to be the virtual value of vi with respect

to the prior distribution Fi . We say a distribution is regular if its
virtual value is increasing.

In this paper, we consider the problem of designing optimal

signal schemes Ωi = (Ti ,πi ) to maximize the buyer’s expected

utility.

Note that for any vi ∈ Supp(i),∑
ti ∈Ti

fi (vi |ti )P(ti ) =
∑
ti ∈Ti

fi (vi )πi (ti |vi ) = fi (vi ). (1)

Equivalently,∑
ti ∈Ti

Fi (vi |ti )P(ti ) =
∑
ti ∈Ti

Fi (vi )πi (ti |vi ) = Fi (vi ). (2)

When Ti is an infinite set, P(ti ) becomes probability density and

satisfies

∫
ti ∈Ti

P(ti ) dti = 1, and the above two equations becomes∫
ti ∈Ti

fi (vi |ti )P(ti ) dti = fi (vi ) (3)∫
ti ∈Ti

Fi (vi |ti )P(ti ) dti = Fi (vi ) (4)

So for each buyer, it is equivalent to design P(ti ) and posterior

distributions Fi (·|ti ) subject to (1) and (2). This is also equivalent

to decompose the prior distribution Fi (vi ) into posterior distribu-

tions Fi (vi |ti ), ti ∈ Ti . This equivalence is also investigated in the

literature [2, 7]. We will use both the terms signaling scheme and

decomposition, which is defined formally below, interchangeably

from now on. We say a decomposition is regular if all posterior

distributions are regular distributions.

Definition 2.1 (decomposition). A decomposition Pi of prior dis-

tribution Fi consists of:

• a set of probabilities, {P(ti ) | ti ∈ Ti };
• a set of posterior distributions, {Fi (·|ti ) | ti ∈ Ti }.

such that (2) is satisfied.

We focus on buyers’ actions and optimize their utilities, in con-

trast to the rich literature that focuses on the seller’s revenue[17,

21, 24–27].

3 TECHNICAL PRELIMINARIES
In this section, we establish our technical framework through a set

of lemmas.

For each buyer i , the expected utilityui equals the average utility
among all possible realizations of signal profile t. We use f (v|t) to
denote

∏
i fi (vi |ti ) and similarly f−i (v−i |t−i ) =

∏
j,i fj (vj |tj ). By

Myerson’s Lemma [18], when all Fi (vi |ti ) are regular distributions,
the utility of buyer i is

ui =

∫
t∈T

P(t)
∫
v
f (v|t)xi (v|t)(vi − ϕi (vi |ti )) dv dt.

Define

x∗i (vi |ti ) =

∫
t−i ∈T−i

(
P(t−i )

∫
v−i

xi (v|t)f−i (v−i |t−i ) dv−i

)
dt−i

Here x∗i (vi |ti ) is known as the interim allocation, the expected

allocation probability when buyer i’s value is vi and his signal is ti ,
over the randomness of all other buyers’ signals and values.

Note that in the Myerson auction, the interim allocation rule

only depends on the virtual value ϕi (vi |ti )when Fi (vi |ti ) is regular.
So we write it as a function of the virtual value, denoted by yi (·),
i.e. yi (ϕi (vi |ti )) = x∗i (vi |ti ),∀vi , ti .

Lemma 3.1. If all posterior distributions Fi (·|ti ) are regular, the
expected utility for buyer i is

ui =

∫
ti ∈Ti

P(ti )

∫
vi

fi (vi |ti )yi (ϕi (vi |ti ))(vi − ϕi (vi |ti )) dvi dti .

Lemma 3.2. For buyer i with value vi ,∫
ti ∈Ti ,f (vi |ti ),0

P(ti )fi (vi |ti )ϕi (vi |ti ) ≥ fi (vi )ϕi (vi )

Proof. For each vi , ti ∈ Ti such that f (vi |ti ) , 0, by definition

ϕi (vi |ti ) = vi −
1−Fi (vi |ti )
fi (vi |ti )

, we have

P(ti )fi (vi |ti )ϕi (vi |ti ) = P(ti )fi (vi |ti )vi − P(ti )(1 − Fi (vi |ti ))

Summing over all ti ’s with f (vi |ti ) , 0, and using Equation (3) and

(4), we get ∫
ti ∈Ti ,f (vi |ti ),0

P(ti )fi (vi |ti )ϕi (vi |ti ) dti

=vi fi (vi ) −

∫
ti ,f (vi |ti ),0

P(ti )(1 − Fi (vi )) dti

≥vi fi (vi ) − (1 − Fi (vi ))

=fi (vi )ϕi (vi )

□

Note that by Lemma 3.2 it is straight forward that, the (My-

erson’s) revenue on the prior distributions is no more than the

expected revenue among all posterior distributions.

Corollary 3.3. The sellers revenue on the prior distributions is
no more than the expected revenue among all posterior distributions
for regular decompositions.

Proof. For any value profile v = (v1, ...,vn ),∫
t∈Ti

∏
i P(ti )

∏
i fi (vi |ti )∏

i fi (vi )
max

i
{ϕi (vi |ti ), 0} dti

≥ max

i

{ ∫
ti ∈Ti

P(ti )fi (vi |ti )ϕi (vi |ti ) dti

fi (v)
, 0

}
≥ max

i
{ϕi (vi ), 0}.

Integrating over v implies the corollary. □

If ϕi (vi |ti ) are the same regardless of ti ∈ Ti , then it is indepen-

dent of ti and can be written asψi (vi ). It can be directly obtained

from Lemma 3.2 thatψi (vi ) ≥ ϕi (vi ).

Definition 3.4. A decomposition of Fi is virtually identical with

functionψi (·) if for all vi , ti ∈ Ti ,

ϕi (vi |ti ) = ψi (vi ), ∀fi (vi |ti ) , 0

One of the main insights of this paper is to show that, for many

cases, the buyer’s optimal signaling scheme is a virtually identical

decomposition. It follows from the Jensen’s inequality and Lemma

3.2. We show the details in Section 5.



If one can prove that the a buyer’s best choice is to choose a

virtually identical decomposition, then does there exist a virtually

identical decomposition of Fi with a given function ψi (·)? It is

obvious that ϕ(v) ≤ ψ (v) < v by definition and Lemma 3.2.

Lemma 3.5. Assume f (v) has support [v, v̄]. Given a continuous
and increasing functionψ (v) satisfying ϕ(v) ≤ ψ (v) < v,∀v < v <
v̄ andψ (v̄) = v̄ , there exists a regular decomposition (T , P(t), F (·|t))
such that

ϕ(v |t) = ψ (v),∀t ∈ T ,v ∈ Supp(t),

if the function f (v) (v −ψ (v)) + F (v) is increasing.
Moreover, the closed-form of decomposition can be characterized

as follows:

• T = {t |v ≤ t < v̄};
• P(t) = f (t) + d

dt (f (t)(t −ψ (t))), t ∈ T ;
• F (v |t) = 1 − e−Q (v |t ),∀v ∈ (v(t), v̄(t)), t ∈ T ,

where

Q(v |t) =

∫ v

v(t )

ds

s −ψ (s)
.

Proof. The proof is constructive and we focus on signals t such
that the support of the corresponding distribution f (v |t) is a single
closed interval. Assume Supp(t) = [v(t), v̄(t)).

For any t ∈ T , F (v |t) must satisfy

v −
1 − F (v |t)

f (v |t)
= ψ (v),∀v ∈ (v(t), v̄(t)).

So F (v |t) < 1,∀v ∈ (v(t), v̄(t)). We must have v̄(t) = v̄,∀t ∈ T .
Also,

dv

v −ψ (v)
=

dF (v |t)

1 − F (v |t)
,∀v ∈ (v(t), v̄(t)).

Integrate on both sides (for ease of presentation, we change the

integration variable to s), we have∫ v

v(t )

ds

s −ψ (s)
=

∫ v

v(t )

dF (s |t)

1 − F (s |t)
.

Since F (v(t)|t) = 0,∀t ∈ T , we have

Q(v |t) = − ln(1 − F (v |t)),∀v ∈ (v(t), v̄(t)),

where Q(v |t) =
∫ v
v(t )

ds
s−ψ (s) .

Therefore,

F (v |t) = 1 − e−Q (v |t ),∀v ∈ (v(t), v̄(t)), (5)

f (v |t) = Q ′(v |t)e−Q (v |t ) =
e−Q (v |t )

v −ψ (v)
> 0,∀v ∈ (v(t), v̄(t)).

From Equation (5) we know that when the minimum value v(t)
is given, the whole posterior distribution F (v |t) is determined. So

without loss of generality we use signal t to represent the minimum

value v(t).
Now we construct P(t). Also note that for all v ∈ [v, v̄], the

following equation must hold:∫
t ∈T

f (v |t)P(t) dt =

∫ v

v
f (v |t)P(t) dt = f (v),

where f (v |t) = 0 if v < Supp(t). Replacing f (v |t), we have∫ v

v
P(t)e−Q (v |t )

dt = f (v)(v −ψ (v)).

Take derivative on both sides:

P(v) −

∫ v

v

P(t)e−Q (v |t )

v − ϕ(v)
dt =

d

dv
(f (v)(v −ψ (v))),

P(v) −

∫ v

v
P(t)f (v |t) dt =

d

dv
(f (v)(v −ψ (v))),

P(v) − f (v) =
d

dv
(f (v)(v −ψ (v))).

In order for P(t) to be a probability density function, we need

P(t) ≥ 0,∀t ∈ T , or equivalently, we need f (v)(v −ψ (v)) + F (v) to
be an increasing function. Thus the lemma is proved.

□

4 THE SINGLE BUYER CASE
In this section, we omit the subscript i since there is only one buyer.
To warm up, we give an alternative proof for results in [2] and [23]

which would be helpful for later arguments. We focus on the cases

where only regular decompositions are allowed.

Suppose the buyer has cumulative valuation function F (·), with
support [v, v̄]. The seller’s action is to post a price rt for each

posterior distribution F (·|t), such that the seller’s revenue rt (1 −

F (rt |t)) is maximized.

Define R(v) = v(1 − F (v)) to be the revenue function and r∗ to
be its maximizer, which is the optimal reserve price for the prior

distribution. Note that R(v) is not exactly the same as the revenue
curve well known in the literature [1, 14], since revenue curve is

normally represented in quantile q = 1 − F (v).
Now we use the function R(v) to analyze the optimal signal

scheme of the buyer. Formally, we have the following theorem.

Theorem 4.1 ([2, 23]). If F (·) is regular and R(v) is concave in the
interval (v, r∗), the buyer’s maximum utility is E[v]−R(r∗) and there
exists a regular decomposition that achieves the maximum utility,
where E[v] denotes the expected value of v .

Proof. Since the posterior distributions are regular, the buyer

gets the item if and only if the virtual value with respect to the

posterior distribution is non-negative, i.e., for all v, t ,

x∗(v |t) = y(ϕ(v |t)) =

{
0 if ϕ(v |t) < 0

1 if ϕ(v |t) ≥ 0

.

Then the buyer’s utility

u =

∫
v

∫
t ∈T

P(t)f (v |t)y(ϕ(v |t))(v − ϕ(v |t)) dt dv

≤

∫
ϕ(v)<0

∫
t ∈T

P(t)f (v |t)v dt dv+∫
ϕ(v)≥0

∫
t ∈T

P(t)f (v |t)(v − ϕ(v |t)) dt dv

≤

∫
v
v f (v) dv −

∫
ϕ(v)≥0

ϕ(v)f (v) dv

=E[v] − R(r∗).



The last inequality follows from Lemma 3.2. The last equation

holds because ϕ(v)f (v) = −R′(v). All inequalities hold in equality

when choosing the virtually identical decomposition withψ (v) =
max{0,ϕ(v)}.

It is obvious thatψ (v) satisfies the conditions in Lemma 3.5. The

closed-form of optimal decomposition can be directly obtained by

Lemma 3.5: For any v ≤ r ≤ r∗, define signal t such that v(t) = r
and

F (v |t) =


0 v ≤ v(t)

1 −
v(t )
v v(t) < v ≤ r∗

1 −
R(v)
R(r ∗)

v(t )
v r∗ < v ≤ v̄

.

and the corresponding density for signal t is P(t) = −R′′(v(t)).
Since R(v) is concave in the interval (v, r∗), we have that P(t) ≥

0,∀t . The regularity ofψ (v) implies the regularity of the decompo-

sition. □

5 MULTIPLE BUYERS CASE
In this section, we assume that the prior distributions are regular

and restrict the posterior distributions to be regular. We say decom-

position is a best response if the buyer has no incentive to deviate

from it. We say a profile of decompositions is an equilibrium if all

buyers’ decompositions are all best responses.

Theorem 5.1. Assume there are two buyers and they have identical
and independent prior distribution F (·) with support [v, v̄], if

• F (v) and ϕ(v) are twice differentiable;
• f ′(v) ≤ 0 and ϕ ′′(v) ≥ 0;
• f (v)(v − Et [t < v]) + F (v) is increasing.

then the virtually identical decomposition with the followingψ (v) is
an equilibrium.

ψ (v) = max{Et [t ≤ v],ϕ(v)},

where Et [t ≤ v] is the expected value under the condition t ≤ v :

Et [t ≤ v] =

∫ v
v t f (t) dt∫ v
v f (t) dt

.

It is not difficult to verify that all liner distributions and equal-

revenue distributions satisfy the above three conditions. Before

proving Theorem 5.1, we first consider some simple cases for a

better understanding.

5.1 Two buyers with one buyer’s value constant
Suppose buyer 1 has a deterministic value c and buyer 2’s prior dis-

tribution is F (·), with support [v, v̄]. We compute the best response

of buyer 2, our target buyer. We assume the tie breaking rule always

maximizes the utility of our target buyer (We omit the subscript 2).

Clearly, buyer 2 cannot win when his value is smaller than c . Thus
we can move all values smaller than c to a single signal and only

consider values greater than c .

Lemma 5.2. If (v − c)(1 − F (v)) is concave of v , the virtually
identical decomposition with the followingψ (v) is a best response:

ψ (v) = max{c,ϕ(v)},∀v ∈ [c, v̄].

Proof. Let R(v) = (v − c)(1 − F (v)), and suppose r∗ maximizes

R(v). Note that for any v ≥ c ,ψ (v) ≥ c and y(ϕ(v |t)) = x∗(v |t) = 1.

Define

Gv (Φ) = y(Φ)(v − Φ), 0 < Φ < v,

which is maximized at Φ∗ = c .
It is notable that the function Gv (Φ) is defined here as “a part

of" the utility function: the total utility is computed by integrating

weighted Gv (ϕ(v |t) over all t ’s and all v’s. So the concavity of

functionGv and Lemma 3.2 enable us to use the Jensen’s inequality

(shown in the next subsection).

Suppose ϕ(d) = c , then similar to the single buyer case, for

c < v < d , we have ∫
t ∈T

P(t)G(ϕ(v |t))f (v |t) dt

≤

∫
t ∈T

P(t)G(c)f (v |t) dt

=(v − c)f (v).

And for d < v < v̄ , we have∫
t ∈T

P(t)G(ϕ(v |t))f (v |t) dt

≤

∫
t ∈T

P(t)f (v |t)(v − ϕ(v |t)) dt

≤v f (v) − f (v)ϕ(v).

So

u =

∫
v

∫
t ∈T

P(t)G(ϕ(v |t))f (v |t) dt dv

≤

∫ d

c
(v − c)f (v) dv +

∫ v̄

d
(v − ϕ(v))f (v) dv .

All equalities hold when choosing the decomposition described

in this Lemma andψ (v) satisfies the conditions in Lemma 3.5.

□

5.2 Best response
Supposes there are two buyers, each with [0, 1] uniform prior distri-

bution. Buyer 1 does not do any decomposition, i.e.,T1 is a singleton

t1 and F (·|t1) is [0, 1] uniform distribution. We compute the best

response of buyer 2, our target buyer. We also omit the subscript 2

for simplicity.

Lemma 5.3. The virtually identical decomposition with the follow-
ingψ (v) is a best response:

ψ (v) = max{0, 2v − 1}.

Proof. Note that buyer one’s virtual value ϕ1(v1) = 2v1 − 1,

which is less than 0 for v1 ≤ 1

2
.

Now the interim allocation rule is:

y(ϕ(v |t)) = x∗(v |t) =
ϕ(v |t) + 1

2

, 0 ≤ ϕ(v |t) ≤ 1.

Define Gv (Φ) =
1

2
(Φ + 1)(v − Φ),∀0 ≤ Φ ≤ v .

Note that G ′
v (Φ) = −Φ + v−1

2
< 0, so Gv (Φ) is decreasing for

0 ≤ Φ ≤ v , and is maximized at Φ∗ = 0.



So for 0 ≤ v ≤ 1

2
, which means ϕ(v) ≤ 0, we have∫

t ∈T
P(t)Gv (ϕ(v |t))f (v |t) dt ≤

∫
t ∈T

P(t)Gv (0)f (v |t) dt =
v

2

.

For
1

2
< v ≤ 1, G ′′

v (Φ) = − 1

2
< 0, we have∫

t ∈T
P(t)Gv (ϕ(v |t))f (v |t) dt

≤Gv

(∫
t ∈T

P(t)f (v |t)ϕ(v |t) dt

)
≤Gv (ϕ(v))

=Gv (2v − 1)

=v(1 −v),

where the first inequality follows from Jensen’s inequality and

the second inequality follows from Lemma 3.2 and the decreasing

monotonicity of G.
All equalities hold when choosing the decomposition described

in this Lemma thus it is a best response. Note that, this ψ (v) is
defined identically to the singer bidder case with [0, 1] uniform

prior distribution, so the existence of the decomposition is proved

and the closed-form decomposition is shown in Section 4.

The utility in this case is

u =

∫
t ∈T

∫
1

0

P(t)f (v |t)G(ϕ(v |t)) dv dt

≤

∫ 1

2

0

v

2

dv +

∫
1

1

2

v(1 −v) dv =
7

48

.

Compared to the utility in prior distribution, the utility of buyer 2

significantly increases.

□

5.3 Relation to first-price auctions
Lemma 5.4. Consider n buyers with a prior distribution profile

(F1(v1), . . . , Fn (vn )). If for each buyer i , his decomposition is a reg-
ular virtually identical decomposition with ψi (vi ), then the util-
ity profile (u1, ...,un ) is equivalent to the utility profile of the first-
price auction where the bidders have a prior distribution profile
(F1(v1), . . . , Fn (vn )) and bidder i’s bidding strategy isbi (vi ) = ψi (vi ).

Proof. From Lemma 3.1 and Equation (1), the utility ui is∫
vi
yi (ψ (vi ))(vi −ψ (vi )) dvi .

Note that the first-price auction allocates the item to the buyer

with the highest bid, and the function yi (ψ (vi )) equals the interim
allocation in the first-price auction when bidding strategy profile

bi (vi ) equals toψi (vi ). So the utility profiles are equivalent. □

Definition 5.5. Suppose that the bidders’ value distribution pro-

file is (F1(v1), . . . , Fn (vn )). We say an auction A is an n-bidders
first-price auction with bidding constraint, if each bidder i can only

bid bi ≥ ϕi (vi ).

Lemma 5.6. If the Bayes Nash equilibrium (b1(·), ...,bn (·)) of A
with value distribution profile (F1(v1), . . . , Fn (vn )) satisfies:

• fi (vi )(vi − bi (vi )) + Fi (vi ) is increasing with vi for each i ;
• x∗i (b)(vi − b) is concave with b for each i ,

then if the prior distribution profile is (F1(v1), . . . , Fn (vn )), it is an
equilibrium for each buyer i’s decomposition to be the virtually iden-
tical decomposition withψi (vi ) = bi (vi ).

The first constraint guarantees the feasibility of the decomposi-

tion. The second constraint guarantees the optimality to choose a

virtually identical decomposition, by Jensen’s inequality. Lemma

5.4 and the property of BNE guarantee that ψi (vi ) = bi (vi ) is the
best choice.

5.4 Proof of Theorem 5.1
To prove Theorem 5.1, we first show that there exists a cut-off point

s such that Et [t ≤ v] ≥ ϕ(v), ∀v ≤ s and Et [t ≤ v] < ϕ(v), ∀v > s .
Then we prove the optimality of the first part, based on the fact that

Et [t ≤ v] is a BNE of a corresponding first-price auction. To prove

the second part, we first prove the concavity and monotonicity of

the utility function. Finally, we apply Jensen’s inequality.

Suppose buyer 1’s decomposition is the virtually identical decom-

position withψ (v) (given in Theorem 5.1). We prove that the same

decomposition is buyer 2’s best response. We omit the subscript 2

in the proof.

Lemma 5.7 ([16]). The symmetric Bayes Nash Equilibrium (BNE)
of the first-price auction with i.i.d prior distribution F (·) is b(v) =
Et [t ≤ v].

Moreover, if buyer 1’s bidding strategy is the BNE strategy, then for
any value v , the expected utility x∗(b(v))(y −b(v)) is increasing with
b(v) for b(v) ≤ Et [t ≤ v], and is decreasing for b(v) > Et [t ≤ v].

Define Gv (Φ) = y(Φ)(v − Φ), 0 < Φ < v . Note that if there is
no constraint for ψ (v), then by Lemma 5.4, it is an equilibrium if

both buyers chooseψ (v) = Et [t ≤ v] (Eachψ (v)maximizesGv (Φ)).
However,ψ (v) has a feasibility constraint in Lemma 3.2.

Lemma 5.8. For buyer 2 with value v such that Et [t ≤ v] ≥ ϕ(v),
Φ = Et [t ≤ v] maximizes Gv (Φ).

Proof. Define ŷ(Φ) to be the value of y(Φ) if we change buyer
1’s decomposition into the virtually identical decomposition with

ˆψ1(v) = Et [t ≤ v], ∀v , then for any b ∈ R,

y(b)(v − b) ≤ ŷ(b)(v − b)

≤ ŷ(Et [t ≤ v])(v − Et [t ≤ v])

= y(Et [t ≤ v])(v − Et [t ≤ v]).

The first inequality holds since
ˆψ1(v) ≤ ψ (v). The second inequality

is due to Lemma 5.7. The last inequality comes from the symmetry

that y(Et [t ≤ v]) = y(ψ (v)) = F (v) = ŷ(Et [t ≤ v]). □

We then prove that there exists a cut-off point:

Lemma 5.9. There exist s ∈ [v, v̄] such that
• ψ (v) = Et [t ≤ v], ∀v ≤ s ;
• ψ (v) = ϕ(v), ∀v > s .

Proof. The lemma is equivalent to Et [t ≤ v] ≥ ϕ(v), ∀v ≤ s
and Et [t ≤ v] < ϕ(v), ∀v > s . Since limv→v E[t ≤ v] = v > ϕ(v),
we can assume on the contrary that there exists s,m such that

Et [t ≤ s] = ϕ(s), Et [t ≤ m] = ϕ(m) and Et [t ≤ v] > ϕ(v), ∀v ∈

(s,m).



For any v ∈ [s,m], let Φ = ϕ(w), y̌′(Φ) = dF (w )

dΦ =
f (w )

ϕ′(w )
. So

G ′
v (Φ) =

(v − ϕ(w))f (w)

ϕ ′(w)
− F (w). (6)

Especially

G ′
v (ϕ(v)) =

1 − F (v)

ϕ ′(v)
− F (v). (7)

By Lemma 5.8 , we have G ′
s (ϕ(s)) = 0 and G ′

m (ϕ(m)) = 0, thus

ϕ ′(s) =
1 − F (s)

F (s)
>

1 − F (m)

F (m)
= ϕ ′(m).

A contradiction with the second condition in Theorem 5.1. □

To make the use of Lemma 5.6, we need to prove the optimality

of biding ϕ(v),v > s in auction A, as well as the concavity of

the utility function. Actually we only need to prove part of it by

following lemmas:

Lemma 5.10. Define y̌(Φ) to be the value of y(Φ) if we change
buyer 1’s decomposition to the virtually identical decomposition with
ˇψ1(v) = ϕ(v), ∀v , then Ǧv (Φ) = y̌(Φ)(v − Φ), 0 < Φ < v is concave.

Proof. Let Φ = ϕ(w), so dΦ = ϕ ′(w) dw . By symmetry, y̌(Φ) =
F (ϕ−1(Φ)) = F (w). So

y̌′(Φ) =
dF (w)

dΦ
=

f (w)

ϕ ′(w)
> 0.

And

y̌′′(Φ) =
ϕ ′(w)f ′(w) − ϕ ′′(w)f (w)

ϕ ′(w)3
< 0.

So Ǧ ′′
v (Φ) = (v−Φ)y̌′′(Φ)−2y̌′(Φ) < 0, the concavity is proved. □

Lemma 5.11. For any v > s , Gv (Φ) = y(Φ)(v − Φ) is decreasing
for Φ > ϕ(v).

Proof. Note that for any v > s ,

ϕ ′(v) ≥ ϕ ′(s) =
1 − F (s)

F (s)
>

1 − F (v)

F (v)
.

Plug this into Equation (7) and we have G ′
v (ϕ(v)) ≤ 0.

Also note that Gv (Φ) = Ǧv (Φ) for all Φ ≥ ϕ(s) (By Lemma 5.9),

so when v > s and Φ > ϕ(v), we have Φ > ϕ(v) ≥ ϕ(s). Thus
Gv (Φ) is concave according to Lemma 5.10. Therefore G ′

v (Φ) ≤

G ′
v (ϕ(v)) ≤ 0 for all Φ > ϕ(v) □

Proof of Theorem 5.1. For v < s , by Lemma 5.8,∫
t ∈T

P(t)f (v |t)G(ϕ(v |t)) dt

≤

∫
t ∈T

P(t)f (v |t)G (Et [t < v]) dt

=f (v)G(Et [t < v]).

For v ≥ s , note that Et [t < v] ≥ Et [t < s] = ϕ(s). So we know that

Gv (Φ),Φ < ϕ(s) is increasing according to Lemma 5.7. So it is never

optimal for any ϕ(v |t) to have value less than ϕ(s). As Gv (Φ) =

Ǧv (Φ) is concave for all Φ ≥ ϕ(s), apply Jensen’s inequality and we

have ∫
t ∈T

P(t)f (v |t)

f (v)
G(ϕ(v |t)) dt

≤G

(∫
t ∈T

P(t)f (v |t)

f (v)
ϕ(v |t) dt

)
≤G(ϕ(v)).

All equalities hold when choosing the decomposition described in

Theorem 5.1, thus it is an equilibrium. □

Example 5.12. If both buyers’ value distribution is uniform [0, 1].

Then the virtually identical decomposition with the followingψ (v)
is an equilibrium:

ψ (v) =

{
v
2

v ∈ [0, 2

3
]

2v − 1
2

3
< v < 1

.

For any 0 ≤ r < 2

3
, define signal t such that v(t) = r , with

probability density P(t) = 3

2
and distribution

F (v |t) =

{
1 − t 2

v2
t ≤ v < 2

3

1 − 27t 2

4
(1 −v) v ≥ 2

3

.

5.5 Extension to the n symmetric buyers case
Note that the BNE of the first-price auction for n symmetric buyer

also has a closed-form

b(v) =

∫ v
v (n − 1)tFn−2(t)f (t) dt

F (v)
.

Thus we have the following theorem:

Theorem 5.13. Assume there are n buyers with i.i.d. prior distri-
bution F (v). Then the virtually identical decomposition withψ (v) =
max[b(v),ϕ(v)] is an equilibrium if the following conditions hold:

• Fn−1(ϕ−1(Φ)) is concave with respect to Φ;
• ϕ ′′(v) ≥ 0;
• f (v)[v − b(v)] + F (v) is increasing with v .

All the conditions holds for any uniform distribution. The proof

is similar to the two symmetric buyers case.

6 BEYOND OPTIMALITY
For the single buyer case, Bergemann et al. [2] prove that as long as

• the seller revenue is no less than the revenue;

• the buyer utility is non-negative;

• the sum of the above two is no less than the maximum social

welfare,

then the (revenue, utility) pair can be implemented by some de-

composition. A natural extension is to consider the implementable

(revenue, utility) pair for the multiple buyers case, where each buyer

can arbitrary choose his signal scheme. However, we show that

for the two buyers case, even if the above three conditions are

satisfied, there exists some (revenue, utility) pairs that can not be

implemented by any decomposition.

To analyze the problem, we first introduce a kind of decompo-

sition, as shown in [23], which corresponds to the extreme point

with the maximum welfare and 0 utility.



Definition 6.1. A decomposition for the prior distribution F (·) is
extremal if and only if for all v, t ∈ T ,

ϕ(v |t) = 0 or v, f or all f (v |t) , 0.

Shen et al. [23] also prove the following lemma:

Lemma 6.2. There exists a close form extremal decomposition for
any prior distribution F .

Based on the extremal decomposition, we are able to show that

the feasible range is not a triangle for the two buyers case by the

following lemmas:

Lemma 6.3. When two buyers has i.i.d. continuous distributions, if
the buyer utility is 0, then the seller’s revenue is strictly larger than
that of the Myerson auction.

Proof. If the utility is 0, the decompositions for both buyers can

only be extremal decompositions, i.e., the virtual values are v1 (v2)

or 0. When the value profile is (v1,v2), v1 < v2 and 0 < ϕ(v1) <

v1, 0 < ϕ(v2) < v2, for the case where buyer 2 wins, the revenue

he contributes is∫
t2:ϕ2(v2 |t2)=v2

P(v2)f (v2 |t2)v2 dt2.

By Lemma 3.2,∫
t2:ϕ2(v2 |t2)=v2

P(v2)f (v2 |t2)v2 dt2 ≥ f (v2)ϕ(v2),

sinceϕ2(v2 |t2) = 0 if it is equal tov2. Note that f (v2)ϕ(v2) is already

the revenue of the Myerson auction (of the prior distribution) that

buyer 2 contributes. However, for the case when buyer 2 loses, buyer

one wins when ϕ1(v1 |t1) = v1 and contributes strictly positive

revenue, of which the probability is non-negligible. So the total

revenue exceeds that of the Myerson auction. □

It is not difficult to verify that the revenue is minimized when

each buyer takes the following extreme decomposition

• with probability
ϕi (vi )
vi , ϕ(vi |ti ) = vi ;

• with probability 1 −
ϕi (vi )
vi , ϕ(vi |ti ) = 0.

That is, subject to Lemma 3.2, taking the extremal decomposition

that maximizes the probability that the posterior virtual value is 0.

We use P1 to denote this point in the (utility, revenue) coordinate.

Lemma 6.4. For the two buyers case with i.i.d. continuous distri-
butions, if the revenue equals that of the Myerson revenue, then total
utility is strictly larger than 0.

Proof. In this case, we prove that both buyers can no do any

decomposition, otherwise the revenue will exceed the revenue of

the Myerson auction. If buyer 1 makes a decomposition such that

for some signal t1, ϕ1(v1 |t1) < ϕ1(v1), then when such signals are

realized, the wining probability for buyer 1 decreases (since the

virtual values of buyer 2 is a continuous distribution). This means

that with positive probability, the winner has changed compared

to the prior distributions. By the concavity of the max function,

the seller’s revenue strictly increase. As for the utility of the prior

distribution, it is clearly positive. □

We use P2 to denote the point with the utility and revenue of

prior distributions in the (utility, revenue) coordinate.

Therefore, given that the feasible range for the two buyers case

is not a triangle, a naïve guess would be that the feasible range is

a quadrilateral, i.e., the southwest boundary is the segment P1P2.

However, our simulation shows that this is not the case (see Figure

1).

Figure 1: Simulation results of the (utility,revenue) pairs,
where the x-axis is the buyers’ utility and the y-axis is the
seller’s revenue

We choose the prior distribution of the two buyers to be [0, 1]

uniform distribution. We let each buyer use a linear combination of

the signaling schemes of points P1 and P2. Since we put constraints

on each buyer’s decompositions, the curve shown in Figure 1 is

not the boundary of the attainable area of (utility, revenue) pairs.

However, it already shows that the boundary is not the straight

line P1P2. So what is the closed-form of the boundary curve still

remains a unknown.

7 CONCLUSION AND FURTUREWORK
We analyze the buyer singling game where each buyer chooses a

signaling scheme that best responds to others. We study the vir-

tually identical decomposition, where for any v , the virtual value
corresponding to any posterior distribution is the same. We charac-

terize the set of such decompositions that can be implemented. We

relate the signaling game to the BNE of the first price auction, and

show that under certain conditions, the equilibrium strategy b(v)
in the first price auction is exactly the virtual value of the virtually

identical decomposition. In particular, for the n buyers symmetric

case, we give closed-form solutions to the unique equilibrium under

certain conditions.

One interesting future work is, of course, to find the solution to

the game for the general multiple buyers case, and also for the case

where the conditions in the symmetric case are relaxed.

It is known the (revenue, utility) pairs form a triangle. Therefore,

another open problem is how to generalize this result to themultiple

buyers case. We exclude some points on the boundary by Lemma 6.3

and Lemma 6.4 and do a simulation to show even for the simplest

case the boundary is non-trivial.
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