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Abstract

It is well-known that the Gale-Shapley algorithm is not truth-
ful for all agents. Previous studies in this category concentrate
on manipulations using incomplete preference lists by a sin-
gle woman and by the set of all women. Little is known about
manipulations by a subset of women.
In this paper, we consider manipulations by any subset of
women with arbitrary preferences. We show that a strong
Nash equilibrium of the induced manipulation game always
exists among the manipulators and the equilibrium outcome
is unique and Pareto-dominant. In addition, the set of match-
ings achievable by manipulations has a lattice structure. We
also examine the super-strong Nash equilibrium in the end.

Introduction
The stable matching theory was introduced by Gale and
Shapley (1962). Since then, stability has been a central
concept in matching market design. The area has attracted
intensive research attention, putting theory into practice
through a large amount of important applications, such as
college admissions and school matchings (Abdulkadiroglu
and Sönmez 2003; Abdulkadiroğlu, Pathak, and Roth 2005;
Gale and Shapley 1962), hospitals-residents matchings (Irv-
ing and Manlove 2009; Irving, Manlove, and Scott 2000;
Roth 1996), kidney exchange programs (Abraham, Blum,
and Sandholm 2007; Roth, Sönmez, and Ünver 2004; 2005;
Liu, Tang, and Fang 2014), and water right trading (Liu et
al. 2016; Zhan et al. 2017).

We study the standard stable matching model, where two
set of agents, namely men and women, have preferences
over each other. A matching is a one-to-one correspondence
between the two sets. A pair of a man and a woman, who
are not matched together, but prefer each other to their des-
ignated partner, is said to be a blocking pair. A match-
ing is called stable if there exists no blocking pair. The
Gale-Shapley algorithm, which was first proposed by Gale
and Shapley (1962), takes as input the preference lists of
all agents, and computes a stable matching in O(n2) time.
The algorithm simulates the procedure of men proposing to
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women. At each round of the procedure, each man proposes
to his favorite woman among those who have not rejected
him yet. Then each woman rejects all men but her favorite
one. The algorithm terminates when no man can make any
proposal.

It is shown that the matching computed by the Gale-
Shapley algorithm is stable and the algorithm is guaranteed
to terminate for each legal input, which immediately implies
that every instance of the stable matching problem has a sta-
ble matching. There are many interesting structural results in
the literature of stable matching theory. For example, among
all stable matchings, the matching computed by the Gale-
Shapley algorithm is preferred by all men to other match-
ings, and thus is called the M-optimal (W-pessimal) match-
ing. Similarly, the W-optimal (M-pessimal) matching can be
found by switching the roles of men and women. In fact, all
men and women have opposite preferences over the set of
stable matchings, i.e., for every two stable matchings µ1 and
µ2, all men prefer µ1 to µ2, if and only if all women prefer
µ2 to µ1. Moreover, the set of all stable matchings forms a
lattice structure.

Incentive Issue
However, the Gale-Shapley algorithm suffers from the in-
centive issue, i.e., some agents have incentive to misreport
their preference lists. Although it is shown that the Gale-
Shapley algorithm is group strategy-proof for all men (Du-
bins and Freedman 1981)1, when the algorithm is adopted,
the women may have incentives to misreport their pref-
erences. Moreover, a well-known impossibility result by
Roth (1982) states that no stable matching algorithm is truth-
ful for all agents.

Gale and Sotomayor (1985) shows that if all women trun-
cate their preference lists properly, the Gale-Shapley algo-
rithm will output a matching that matches each of them to
their partner in the W-optimal matching. Teo, Sethuraman,
and Tan (2001) provide a polynomial time algorithm to find
the optimal single-agent truncation manipulation. However,

1Precisely, group strategy-proof means no coalition manipula-
tion can make all men in the coalition strictly better off, in this
context. If considering the case where no man is worse off and at
least one man is strictly better off, the Gale-Shapley algorithm is
not group strategy-proof (Huang 2006).



little is known when only a subset of players can misreport
their preference lists.

This paper is directly motivated by the recent reform of
the college admissions process in China. In China, all stu-
dents are required to take the National College Entrance
Exam before applying to the universities. The applications
are settled by the Ministry of Education using the Gale-
Shapley algorithm. However, besides the entrance exam, the
Ministry also has the independent admission program (aka
the university initiative admission plan). This program al-
lows the universities to conduct independent exams to deter-
mine their own ordering of the students. Starting from 2010,
these universities began to form leagues and determine their
orderings together. Such leagues are widely believed to be
beneficial to their members, since they can cooperatively
manipulate the admission results. However, these universi-
ties are also faced with the problem of competition, since
they target for a similar set of students. Such leagues are
urged to dissolve by the Ministry for the belief of unfairness.

Our Results
We analyze the manipulation problem in the stable matching
problem, where agents can report a preference list over any
subset of the other sex. Contrary to most existing works, we
allow any subset of women to be the manipulators. We show
that a strong Nash equilibrium (i.e., no subset of manipula-
tors can deviate and get strictly better off) always exists for
any subset of women. Moreover, in the strong Nash equi-
librium, each manipulator removes every man below her W-
optimal partner on her list and in the induced matching, all
manipulators can be matched to their W-optimal partners.

This result generalizes the results by Teo, Sethuraman,
and Tan (2001) and Gale and Sotomayor (1985), which con-
sider manipulations by a single woman and the set of all
women, respectively. Moreover, the equilibrium outcome is
unique and Pareto-dominant for all manipulators, i.e., all
manipulators reach a consensus on a single manipulation
profile. Furthermore, the set of all stable matchings attain-
able from general manipulations forms a join-semilattice.

Finally, we show how to check whether such an unique
strong Nash equilibrium is a super-strong Nash equilibrium.

Related Works
Knuth, Motwani, and Pittel (1990) show that the number of
different partner that a woman can have in all stable match-
ings is between

(
1
2 − ε

)
lnn and (1 + ε) lnn, where n is

the number of men and ε is a positive constant. Jaramillo,
Kayı, and Klijn (2014) study possible manipulations by the
women in a many-to-many setting. They consider the so-
called dropping strategies, where women are allowed to
strategically remove some men in their true preference lists
but cannot shuffle their lists. They give an exhaustiveness
of this kind of strategies, i.e., for any given stable match-
ing, there exists some dropping strategy that can replicate
or improve the matching. Gonczarowski (2014) study group
manipulations by all women when the Gale-Shapley algo-
rithm is applied. They also consider dropping strategies and
give a tight upper bound on the number of men that must be

removed in order for the W-optimal matching to be the final
output.

Dworczak (2016) put forward a new matching algorithm
to find stable matchings, where all agents are allowed to
make proposals. Their algorithm is a natural generalization
of the Gale-Shapley algorithm and they also characterize the
set of stable matchings by showing that a matching is stable
if and only if it is a possible output of their algorithm. Teo,
Sethuraman, and Tan (2001) study a different type of ma-
nipulation, where a woman can only permute her true pref-
erence list2. This is a natural constraint when all agents are
only allowed to report a complete preference list. They fo-
cus on the case where there is only a single manipulator and
give an algorithm to find the optimal manipulation that runs
in polynomial time. Gupta et al. (2015) extends the algo-
rithm to the so-called P -stable (stable w.r.t preferences P )
Nash equilibrium setting.

With the impossibility result by Roth, it is clear that there
always exist some agents who have the incentive to manip-
ulate the matching result, no matter what stable matching
algorithm is applied. Nevertheless, Pini et al. (2009) design
a stable matching mechanism and prove that it is computa-
tionally hard to find a manipulation, even for a single ma-
nipulator.

Preliminaries
In the standard stable matching problem, there are two sets
of agents: the men (denoted by M ) and the women (denoted
by W ). A preference profile P is the collection of the pref-
erence lists of all agents. The preference list P (m) of a man
m ∈M is a strict total order �m over a subset of W , where
w1 �m w2 denotes that m prefers w1 to w2. Similarly, the
preference list P (w) of a woman w ∈ W is a strict total
order �w over a subset of M . We will use �Pm and �Pw to
explicitly refer to the preference lists of m and w in profile
P , if multiple preference profiles are considered. However,
for simplicity, we always use �m and �m to denote the true
preferences of m and w. We slightly abuse notation and use
P (X) to denote the preference profile for a set of agents
X ⊂M ∪W .

A matching between men and women is a function µ :
M∪W →M∪W , that maps each agent to his or her partner
in the matching. For example, µ(m) = w means that m is
matched to w. Thus µ(m) = w if and only if µ(w) = m. In
any matching, a man should be matched with a woman and
vice versa. However, we also write µ(m) = m or µ(w) = w
if m or w is unmatched in µ. We say µ1 �W µ2, if for all
w ∈W , µ1(w) �w µ2(w).

A matching is individually rational if no one is matched
to someone who is absent from his or her preference list. A
pair of man and woman (m,w) is said to block a matching
µ, if they are not matched together, yet prefer each other to
their partners in µ. Such a pair is also called a blocking pair.
A matching is stable if it is individually rational and has no
blocking pairs.

2This type of manipulations is widely studied in the social
choice domain, e.g. (Gibbard 1973).



Recall that the Gale-Shapley algorithm is not truthful for
the women (Dubins and Freedman 1981). Let L ⊆ W be
the set of manipulators and N = W \ L be the set of non-
manipulators. We define a manipulation game between the
manipulators.
Definition 1 (Manipulation game). Given the true prefer-
ence profile of all agents, and a set L ⊆W of manipulators,
a manipulation game is a tuple (L,AL), where:

1. L ⊆W is the set of manipulators;
2. AL =

∏
i∈LAi is the set of all possible reported prefer-

ence profiles.
Remark 1. Note that in the above definition, all agents in
M ∪ N are not players. Thus their preference profile is
always their true preference profile. The set of all possi-
ble preferences Ai depends on different manipulation types
which will be defined later, and we only consider the case
where all manipulators use the same type of manipulations.

The outcome of the manipulation game (also called in-
duced matching in this paper) is the matching resulted from
the Gale-Shapley algorithm with respect to the reported
preference profiles. A manipulator’s preference over all pos-
sible outcomes of this game is naturally her true preference
in P .

We now define two types of manipulations, which deter-
mines the elements in AL.
Definition 2 (General manipulation). Let Ob be the set of
strict total orders over all possible subsets of M . The ma-
nipulators use general manipulations if Ai = Ob,∀i ∈ L.
Definition 3 (Truncation manipulation). Let (m1,m2, . . . ,
mk) be a woman i’s true preference list. In truncation ma-
nipulations, Ai = {(m1,m2, . . . ,mj) | ∀j 6 k}, ∀i ∈ L.

It is clear that the truncation manipulation is a spe-
cial case of the general manipulation. The overall prefer-
ence profile that is taken as input in the Gale-Shapley al-
gorithm is P = (P (M), P (N), P (L)). Denote by S(P )
the set of all stable matchings under profile P . More-
over, let SA(P (M), P (W )) denote the set of all achiev-
able stable matchings, i.e., stable matchings (with respect
to the true preference profile) that can be manipulated to by
the manipulators. We sometimes write SA for short when
(P (M), P (W )) is clear from the context.
Definition 4 (Nash equilibrium). A preference profile P ′(L)
of a manipulation game is a Nash equilibrium if ∀w ∈ L,
reporting P (w) results in the best partner for w while as-
suming the other women reports P ′(L) \ {P (w)}.

In other words, in a Nash equilibrium, any w ∈ L can-
not be matched with a better partner in any stable matching
she can manipulate to. We are also interested in the strong
notions of Nash equilibrium.
Definition 5 (Strong Nash equilibrium & Super-strong Nash
equilibrium). A Nash equilibrium is strong, if no subset of
manipulators can jointly manipulate to a matching that is
strictly better off for all of them. A Nash equilibrium is super-
strong, if no subset of manipulators can jointly manipulate
to a matching that is weakly better off for all and strictly
better off for at least one of them.

Equivalence between General Manipulation
and Truncation Manipulation

Gale and Sotomayor (1985) prove that a strong Nash equi-
librium always exists if all women are manipulators and use
truncation manipulations. They construct explicitly such a
strong equilibrium by letting each woman use a truncation
manipulation that removes all men ranked below her W-
optimal partner. Ma (2010) also studies truncation manip-
ulations in the same setting and shows that there is only one
Nash equilibrium. In addition, the equilibrium profile admits
a unique stable matching, namely, the W-optimal matching.
Teo, Sethuraman, and Tan (2001) provide a polynomial time
algorithm to find the optimal single-agent manipulation. We
extend these results to coalition manipulations and consider
any subset L ⊆W as manipulators.

Lemma 1. Let P = (P (M), P (W )) be the true preference
profile for all agents. Every matching in SA(P ) induced by
a general manipulation can be induced by a truncation ma-
nipulation.

To prove this lemma, we need another useful result from
(Gonczarowski and Friedgut 2013):

Theorem 1. Given agents’ strict preferences over agents of
the other sex, and a set of manipulators L ∈W are allowed
to use general manipulations, if no lying woman is worse off,
then (1) No woman is worse off; (2) No man is better off.

Proof of Lemma 1. Let µ be any matching in SA and P ′(L)
be the corresponding reported preference profile by the
manipulators in a Nash equilibrium of general manipula-
tion. Therefore, µ is the M-optimal matching of P ′ =
(P (M), P (N), P ′(L)). We construct a truncated preference
profile Pt(L) for the manipulators where for each manipula-
tor w, µ(w) is the last in her preference lists. (If w is single
in µ, her preference list remains the same as her true prefer-
ence list).

Note that µ is stable under the true preference profile.
We show that under Pt = (P (M), P (N), Pt(L)), µ is also
stable. Clearly, µ is individually rational. Assume on the
contrary that a pair (m,w) blocks µ under Pt. It follows
that m �Pt

w µ(w) and w �Pt
m µ(m). Then we know that

m �Pw µ(w) is also true ∀w ∈ W from the construction of
Pt. Also, w �Pm µ(m) is true since no man’s preference list
is changed. Thus, (m,w) is a blocking pair under P , which
contradicts to the stability of µ.

We claim that µ is the W-pessimal matching under Pt.
Suppose not and µ∗ is the W-pessimal matching and µ 6= µ∗.
Then we let the manipulators manipulate again from P ′ to
Pt and apply Theorem 1 (notice that when applying the the-
orem, the term “worse off” is with respect to P ′). The re-
sulting matching is µ∗. Clearly, no lying woman is worse
off according to P ′. Thus no woman is worse off. So for
any non-manipulator w, we have that µ∗(w) �P ′w µ(w). It
follows that µ∗(w) �Pt

w µ(w), since w is not a manipula-
tor, which contradicts to the assumption that µ∗ is the W-
pessimal matching under Pt and µ∗ is not equal to µ.

Remark 2. Note that this result is different from the exhaus-
tiveness result in (Jaramillo, Kayı, and Klijn 2014), since ex-



haustiveness only requires that ∀µ ∈ SA(P ), there exists a
truncation manipulation such that the induced matching is
weakly preferred by the manipulators.

According to Lemma 1, it is therefore without loss of gen-
erality to focus on truncation manipulations. In the remain-
der of this paper, unless explicitly specified, we say a partner
or a matching is W-optimal or W-pessimal for a woman if it
is so under the true preference profile.

Strong Nash Equilibria
It is well-known that any unmatched woman in a stable
matching remains unmatched in all stable matchings.

Theorem 2. (Roth 1986) Given P (M) and P (W ), the set of
unmatched agents is the same among all stable matchings.

Recall that a Nash equilibrium induces a stable matching
under true preferences (Gale and Sotomayor 1985). Any un-
matched woman in the W-optimal matching has no incentive
to misreport since she will always be unmatched. Thus, we
only need to consider the case where no manipulator is un-
matched in the W-optimal matching.

Lemma 2. Let (P (M), P (W )) be the true preference pro-
file and P ′(L) be the reported profile by the manipula-
tors. If for each manipulator w, her W-optimal partner is
not removed from her list in truncation manipulation, then
S(P (M), P (N), P ′(L)) ⊆ S(P (M), P (W )).

Proof. Suppose not and there exists a matching µ which
is in S(P (M), P (N), P ′(L)) but not in S(P (M), P (W )).
Then, there exists a blocking pair (m,w) in µ under true
preference lists. For m, since his preference list is not mod-
ified, he prefers w to µ(m) in true preference lists and the
lists after truncation.

If w is not single in µ, then m is still in her prefer-
ence list after truncation manipulation since m �w µ(w),
which forms a blocking pair in µ with respect to the trun-
cated preference lists. Otherwise, if w is single in µ, no-
tice that, since the order of each man and each woman’s
preference list is not changed, the W-optimal matching is in
S(P (M), P (N), P ′(L)). Thus,w is single in the W-optimal
matching and according to the assumption, she is not a ma-
nipulator.

Theorem 3. In truncation manipulations, it is a strong Nash
equilibrium that each manipulator removes every man be-
low her W-optimal partner on her list. Furthermore, in the
induced matching, all manipulators can be matched to their
W-optimal partners.

Our proof is based on the following theorem.

Theorem 4 (Limits on successful manipulation, (Demange,
Gale, and Sotomayor 1987)). Let P be the true preferences
(not necessarily strict) of the agents, and let P ′ differ from
P in that some coalition C of men and women mis-state
their preferences. Then there is no matching µ, stable for
P ′, which is strictly preferred to every stable matching un-
der the true preferences P by all members of C.

Proof of Theorem 3. We first prove that each manipulator is
matched to her W-optimal partner if they report P ′(L). Ac-
cording to Lemma 2, the induced matching µ must be in
S(P (M), P (W )). Notice that the W-optimal matching is
still in S(P (M), P (N), P ′(L)). Thus, according to Theo-
rem 2, each manipulator is not single after manipulation, and
she cannot be matched with a man worse than her W-optimal
partner since she already removed him. Also, each woman
cannot get a partner better than her W-optimal partner. Thus,
all manipulators must be matched with their W-optimal part-
ner.

Next we show that it is a strong Nash equilibrium for all
manipulators to do so. Note that for all stable matchings
in S(P (M), P (N), P ′(L)), each manipulators are matched
with their W-optimal partner. Applying Theorem 4 with
C ⊆ L, we can conclude that there is no matching in
S(P (M), P (N), P ′(L \ C), P ′(C)) is strictly preferred to
every stable matching in S(P (M), P (N), P ′(L)) for all
members of C. Therefore, the constructed strategy profile
is a strong Nash equilibrium.

This result generalizes the result by (Gale and Sotomayor
1985) and (Teo, Sethuraman, and Tan 2001), which only
considers manipulations by the set of all women. If the set
of manipulators contains only one woman, the problem be-
comes a single-agent manipulation and Theorem 3 can also
be applied. Thus, in coalition manipulations, every manip-
ulator is matched with the same man as in her best single-
agent manipulation.

As Theorem 3 states, there is no conflict between differ-
ent manipulators in the general manipulation. In fact, each
woman can individually perform their optimal singleton ma-
nipulation, which provides her W-optimal partner. When
combining together, all of them can still be matched to their
W-optimal partners.

Lattice Structure
A lattice is mathematical structure containing a set where
any two elements have a unique supremum. Formally,

Definition 6 (Join and Meet). Let � be a partial order de-
fined over a set L for any subset S of L. Let e be an upper
bound of S if e � s, ∀s ∈ S. e′ is a join of S if e′ is an
upper bound of S and for any upper bound e of S, e′ � e.
Similarly, let e be an lower bound of S if e � s, ∀s ∈ S. e′
is a meet of S if e′ is an lower bound of S and for any lower
bound e of S, e′ � e.
Definition 7 (Lattice). L is a join-semilattice if every two-
element subset {e1, e2} ⊆ L has a join. L is a meet-
semilattice if every two-element subset {e1, e2} ⊆ L has
a meet. A lattice is both a join-semilattice and a meet-
semilattice.

Now we define two notations that will be useful for later
arguments.

Definition 8. Given two matchings µ and µ′, define µ∨ =
µ∨µ′ to be the matching that matches each man to his more
preferred partner and each woman to her less preferred
partner in µ and µ′. Similarly, we can define µ∧ = µ ∧ µ′,



which matches each man to his less preferred partner and
each woman to her more preferred partner.

The following theorem states that µ∨ and µ∧ are not only
well-defined matchings, but also essential to the lattice struc-
ture of the set of all stable matchings.

Theorem 5 (Conway’s Lattice theorem; (Knuth 1976)).
When all preferences are strict, if µ and µ′ are stable match-
ings under preference profile P , then µ∨ = µ ∨ µ′ and
µ∧ = µ ∧ µ′ are both matchings. Furthermore, they are
both stable under P .

Therefore, the set of all stable matchings is a lattice with
�M and �W . Let µL be a partial matching obtained by re-
stricting the corresponding full matching µ to the set of ma-
nipulators and moreover, we call µ an extension of µL. Let
SLA be the set of partial matchings obtained by restricting all
matchings in SA to the set of manipulators L.

Before we discuss the lattice structure of the set of SA,
we first prove a lemma about the relation between the length
of the preference lists and the induced matching. We say a
preference profile P1 = (P (M), P (N), P1(L)) is shorter
than another P2 = (P (M), P (N), P2(L)) if for each w ∈
L, |P1(w)| ≤ |P2(w)|. In other words, P1 is shorter than P2

if all manipulators remove no less men in P1 than in P2.

Lemma 3. Let P1 and P2 be two preference profiles and µ1

and µ2 be the two corresponding M-optimal matchings. If
for each manipulator, her W-optimal partner is in both P1

and P2 and P1 is shorter than P2, then µ1 �W µ2.

Proof. The lemma is a corollary of Lemma 2. Since P1 is
shorter than P2, P1 can be viewed as a manipulation starting
from P2. By Lemma 2, the set of stable matchings under
P1 is a subset of that under P2. Moreover, the Gale-Shapley
outputs the W-pessimal matching and thus, µ1 �W µ2.

Lemma 4. Given two truncated preference profiles P1

and P2 from (P (M), P (W )), and two corresponding M-
optimal matchings by µ1 and µ2. Let P∩ = P1 ∩ P2 =
(P (M), P (N), P∩(L)) such that

P∩(w) =

{
P1(w) if |P1(w)| ≤ |P2(w)|
P2(w) otherwise

for all w ∈ L. Then the M-optimal matching µ∩ under P∩
is exactly µ∧ = µ1 ∧ µ2.

Proof. It is easy to check that P∩(L) is a legal profile for the
manipulators, i.e., the preference list for each manipulator w
can be obtained by truncating her true preference list.

According to Lemma 3, we have µ∩ �W µ1 and µ∩ �W
µ2, so that from the definition of µ∧, we have µ∩ �W µ∧.
To show that µ∧ is identical to µ∩, we only need to show that
µ∧ �W µ∩. We claim that µ∧ is a stable matching underP∩,
and thus µ∧ �W µ∩ because µ∩ is the W-pessimal matching
under P∩.

For each w, µ∧(w) �w µ1(w), so µ∧(w) is in P1(w).
Similarly µ∧(w) is also in P2(w). Therefore µ∧(w) is in-
dividually rational under P∩. Assume that µ∧ is not stable
under P∩. Then there must be a blocking pair (m,w) and
m �w µ∧(w) and w �m µ∧(m) under P∩. However, the

two inequalities also hold in both P1(w) and P2(w). Notice
thatm andw are unmatched in at least one of the two match-
ings µ1 and µ2, otherwise µ∧(w) = m. Thus, (m,w) blocks
either µ1 or µ2, which produces a contradiction.

Lemma 4 indicates that SA is a join-semilattice. How-
ever, it is not a meet-semilattice, i.e., there exists a subset in
SA that does not have a meet. Consider the counter-example
shown in Table 1 and 2.

m1 w1 w3 w5 − − −
m2 w2 w3 w6 − − −
m3 w3 w4 − − − −
m4 w4 w3 − − − −
m5 w5 w1 − − − −
m6 w6 w2 − − − −

Table 1: Men’s preference lists

w1 m5 m1 − − − −
w2 m6 m2 − − − −
w3 m4 m2 m1 m3 − −
w4 m3 m4 − − − −
w5 m1 m5 − − − −
w6 m2 m6 − − − −

Table 2: Women’s preference lists

µ1 µ2 µ∨
m1 w5 m1 w1 m1 w1

m2 w2 m2 w6 m2 w2

m3 w4 m3 w4 m3 w4

m4 w3 m4 w3 m4 w3

m5 w1 m5 w5 m5 w5

m6 w6 m6 w2 m6 w6

Table 3: Matching results

Suppose L = {w1, w2}. If w1 alone lies and cuts her list
to the one containing only m5, the induced matching is µ1

in Table 3. If w2 alone lies and lists only m6, we will get
µ2. But the meet of the these two matchings µ∨ cannot be
induced by only truncating the preference lists ofw1 andw2.

Nevertheless, we prove that the set of partial matchings
SLA is a lattice.
Lemma 5. Given P1 = (P (M), P (N), P1(L)) and P2 =
(P (M), P (N), P2(L)), suppose µ1 and µ2 are the two cor-
responding M-optimal matchings. Let µ∨ = µ1 ∨ µ2. Then
µL∨ is in SLA.

Proof. We construct a preference profile P∪ as follows. For
each w ∈ L, she removes all men ranked below µ∨(w) in
her true preference list. We prove that the corresponding M-
optimal matching µ∪ is an extension of µL∨, i.e., µL∪ = µL∨.

Using similar techniques as in the proof of Lemma 4, we
conclude that µ∨ is a stable matching with respect to prefer-
ence profile P∪. For each w ∈ L, since µ∨(w) is the last one



in her preference list and they must be matched to their W-
pessimal partner under P∪, µ∨(w) must be equal to µ∪(w)
and µL∨ = µL∪.

Lemma 4 is true when restricted to manipulators. Com-
bining the above two lemmas together, we immediately get:

Theorem 6. Given the set of manipulators L and the
true preference profiles (P (M), P (W )), the set of stable
matchings that can be induced by general manipulations,
SA(P (M), P (W )), is a join-semilattice, and the set of par-
tial matchings SLA(P (M), P (W )) is a lattice.

In a finite join-semilattice, every two distinct matchings
have a join and every woman is weakly better off in the
join than any of the two matchings. Thus, if there exist two
distinct matchings resulting from strong Nash equilibria, at
least one matching can be improved from the perspective of
women. Thus, the matching induced from the strong Nash
equilibria is unique and Pareto-dominant.

Super-strong Nash Equilibrium
However, a super-strong Nash equilibrium does not always
exist.

Example 1. Consider the following preference lists (see Ta-
ble 4 and 5).

m1 w1 w3 w2

m2 w2 w1 −
m3 w3 − −

Table 4: Men’s preference lists

w1 m2 m1 −
w2 m1 m2 −
w3 m1 m3 −

Table 5: Women’s preference lists

The only stable matching under true preference lists is
{(m1, w1), (m2, w2), (m3, w3)}. Therefore, this matching
is the only possible outcome of a super-strong Nash equi-
librium. However, consider the following manipulation:

w1 m2 − −
w2 m1 − −
w3 m3 − −

Table 6: Women’s new preference lists

After using the manipulation, the only stable matching is
{(m1, w2), (m2, w1), (m3, w3)}, in which w1 and w2 are
strictly better off while w3 remains the same.

The intuition behind the construction is that we consider
one manipulatorw who keeps her W-pessimal partnerm and
rejects any better proposals. Therefore, it is equivalent to a
manipulation game by removing w from W , m from M and
it is possible that in the remaining manipulation game, the

W-optimal matching is weakly better off than the W-optimal
matching in the original game, though it is unstable with re-
spect to true preference lists. Thus, with the help of manipu-
lator w, a coalition can have a further manipulation to make
everyone weakly better off and at least one strictly better off.

Algorithm
But notice that a super-strong Nash equilibrium must also
be a strong Nash equilibrium. Since there exists a unique
strong Nash equilibrium, one can check the existence and
compute a super-strong Nash equilibrium by simply check-
ing whether there exists a deviation to an unstable matching
from the unique strong Nash equilibrium outcome.

Given true preference lists P = (P (M), P (N), P (L)),
a strong Nash equilibrium P ′(L), and its induced matching
µ, if there exists a way to deviate to an unstable matching
µ′ such that all manipulators are weakly better off and at
least one manipulator w∗ with µ′(w∗) = m∗ �w∗ µ(w∗)
is strictly better off. Consider the modified preference lists
P ′w∗,m∗(L) from P ′(L): (1) w∗ removes all men ranked
below m∗ in her true preference lists; (2) ∀w ∈ L with
w �m∗ w∗, removes m∗.

Since no manipulators accept more men in P ′w∗,m∗(L)
than in P ′(L), either all of them are weakly better off or
some of them become unmatched.

Theorem 7. Let P = (P (M), P (N), P (L)) be the true
preference profile. Let P ′(L) be a strong Nash equilibrium,
and µ be the induced matching by (P (M), P (N), P ′(L)).
P ′(L) is a super-strong Nash equilibrium if and only if for
all w ∈ L and m ∈ P (w) with m �w µ(w), there exists
one manipulator w′ ∈ L such that w′ becomes unmatched
under preference lists (P (M), P (N), P ′w,m(L)).

Proof. By Lemma 1, it is without loss of generality to as-
sume that all manipulators only use truncation manipula-
tions.

“only if” direction: Suppose not and for the sake of con-
tradiction, suppose that there exists w∗ ∈ L and m∗ ∈
P (w∗) with m∗ �w∗ µ(w) such that under preference
lists (P (M), P (N), P ′w∗,m∗(L)), no w′ ∈ L becomes un-
matched. Note that no manipulators accept more men in
P ′w∗,m∗(L) than in P ′(L). Therefore, all manipulators are
weakly better off since all of them are still matched af-
ter deviation. Moreover, w∗ can only be matched to a man
m′ �w∗ m∗ �w∗ µ(w∗) and thus w∗ is strictly better off.
Thus, we obtain a deviation such that all manipulators are
weakly better off and at least one manipulator is strictly bet-
ter off, implying that P ′(L) is not a super-strong Nash equi-
librium.

“if” direction: Suppose not and for the sake of contradic-
tion, assume there still exists a deviation to P ′′(L) with in-
duced matching µ′ such that all manipulators are weakly bet-
ter off and at least one manipulator w∗ is strictly better off.
Note that it is without loss of generality to assume that each
manipulator w removes every man other than µ′(w) in her
lists since it does not change the induced matching. There-
fore, no manipulators accepts more men in P ′′(L) than in



P ′w∗,µ′(w∗)(L). However, we know there exists one manipu-
lator w′ ∈ L such that w′ becomes unmatched under prefer-
ence lists (P (M), P (N), P ′w∗,m∗(L)). By removing more
men from manipulators’ preference lists can only cause
more manipulators become unmatched. Therefore, P ′′(L)
cannot be a deviation such that all manipulators are weakly
better off and at least one manipulator w∗ is strictly better
off.

By Theorem 7, we can design an algorithm to com-
pute a super-strong Nash equilibrium by first computing the
unique strong Nash equilibrium P ′(L) according to Theo-
rem 3. After that, check whether P ′(L) is a super-strong
Nash equilibrium by enumerating all possible pair of (w,m)
with w ∈ L, m ∈ P (w), and m �w µ(w). If assume
|M | = |W | = n. then the total time complexity is O(n4):
there are O(n2) possible pairs of (w,m) to enumerate and
we need O(n2) time for running Gale-Shapley algorithm on
the (P (M), P (N), P ′w,m(L)).

Future Research
We show that Gale-Shapley algorithm is vulnerable to ma-
nipulation when women are allowed to report arbitrary pref-
erence lists. But is there any practical matching mechanism
that is hard to manipulate? Though all matching mecha-
nism can be manipulated due to the impossibility result
Roth (1982), we can still hope for a practical mechanism that
is computationally hard to manipulate. It is also interesting
to investigate other types of manipulations, e.g. permutation
manipulations.
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