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ABSTRACT
In this paper, we consider permutation manipulations by any subset

of women in the Gale-Shapley algorithm. This paper is motivated

by the college admissions process in China. Our results also answer

an open problem on what can be achieved by permutation manipu-

lations. We present an efficient algorithm to find a strategy profile

such that the induced matching is stable and Pareto-optimal while

the strategy profile itself is inconspicuous. Surprisingly, we show

that such a strategy profile actually forms a Nash equilibrium of

the manipulation game.

In the end, we show that it is NP-complete to find a manipulation

that is strictly better for all members of the coalition. This result

demonstrates a sharp contrast between weakly better-off outcomes

and strictly better-off outcomes.
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1 INTRODUCTION
Stability has been a central concept in economic design, ever since

the seminal work by Gale and Shapley [9]. Intensive research has

been done over the years. A variety of applications of this problem

have also been developed, ranging from college admissions and

school choice [2, 3, 9] to centralized kidney exchange programs [4,

24, 30, 31] to hospitals-residents matchings [19, 20, 29] to recently

proposed water right trading [25, 35].

In the standard stable matching model, there is a set of men and

a set of women. Each agent has a preference list over a subset of the

opposite sex. A matching between men and women is stable if no

pair of agents prefer to match with each other than their designated

partners. Gale and Shapley [9] put forward an algorithm, aka. the

Gale-Shapley algorithm, that computes a stable matching in O(n2)
time. The algorithm (men-proposing version) proceeds in multiple

rounds. At each round, each man proposes to his favorite woman

that has not rejected him yet; and each woman keeps her favorite
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proposal, if any, and rejects all others. The algorithm iterates until

no further proposal can be made.

The algorithm enjoysmany desirable properties. It is well-known

that the matching returned by the algorithm is preferred by every

man to any other stable matching, hence called the M-optimal

(for men-optimal) matching. It is also known that all stable match-

ings form a lattice defined by such a preference relation and the

M-optimal matching is the greatest element in the lattice [21]. Fur-

thermore, men and women have strictly opposite preferences over

two stable matchings: every man prefers stable matching µ1 to

stable matching µ2 if and only if every woman prefers µ2 to µ1. As
a result, the M-optimal matching is the W-pessimal (for women-

pessimal) matching [26]. The smallest element in the lattice, the

W-optimal (M-pessimal) matching, can be obtained by swapping

the roles of men and women.

1.1 Motivations
Thiswork ismotivated by the college admission process in China [7],

where the stable matching model is adopted. The admissions pro-

cess consists of two phases: the examination phase and the appli-

cation phase. In the examination phase, all students are required

to take the National College Entrance Examination (NCEE, aka.

the National Higher Education Entrance Examination), which is

held nation-wide annually. Millions of students take the NCEE ev-

ery year, and the number peaked at 10.5 millions in the year of

2008. The NCEE contains a series of exams on different subjects.

After the examination, each student receives a total score which

is the sum of the scores of the subjects. The total score uniquely

determines an ordering of all students, which is also the preference

ordering adopted by all colleges and universities. In the application

phase, each student who takes the NCEE is required to submit an

ordered list of about 4 to 6 intended colleges or universities. In the

end, the Ministry of Education settles the applications using the

student-proposing version of the Gale-Shapley algorithm.

However, a major concern of the Gale-Shapley algorithm is its

non-truthfulness. While it is known that the algorithm is group

strategy-proof
1
for all men [8], it is not truthful for women. In fact,

Roth [28] shows that there is no stable matching algorithm that is

strategy-proof for all agents.

Such an undesirable property gives rise to the so-called “ma-

nipulation” problem for the women. In China’s college admissions

process, besides the NCEE, some top universities are also allowed to

conduct independent recruitment exams. These universities promise

1
Precisely, group strategy-proof means no coalition manipulation can make all men in

the coalition strictly better off, in this context. If considering the case where no man is

worse off and at least one man is strictly better off, the Gale-Shapley algorithm is not

group strategy-proof [15].



to the students who perform well in these exams that, when ap-

plying to these universities, a certain amount of extra scores will

be added to the their NCEE total scores. In other words, such in-

dependent recruitment exams give the universities the ability to

manipulate the admissions result by changing the ordering of the

students in their preference ordering.

Starting from 2010, several leagues of such universities emerged,

with the two most influential leagues represented by China’s two

major universities, the Tsinghua University (the Tsinghua league)

and the Peking University (the Peking league). Each league contains

universities of similar types and tiers. Thus universities of the same

league attract about the same set of students, and they conduct the

independent recruitment programs together [1]. The benefits of

such leagues are obvious: (1) the costs of organizing such exams

are greatly reduced since they are shared by the universities; (2) the

students only need to participate in one such exam instead of many.

However, such leagues are widely conjectured to be beneficial to

universities inside the leagues when it comes to the quality of fi-

nally admitted students, since they can cooperatively manipulate

the admissions result to benefit them all. Besides cooperations, the

universities in the same league are also faced with the problem of

competition because they share a similar set of candidate students.

In 2012, two top universities (Fudan University and Nankai Uni-

versity) quit the Peking league, both claiming that they were not

able to recruit their desired students. Such leagues were urged to

dissolve in 2015 by the Ministry of Education for the belief that it

is unfair for universities that are not in any of the leagues.

1.2 Results
We study the problem where a coalition of women (universities)

can manipulate the Gale-Shapley algorithm. Most existing works

consider the general case where women can report any preference

list (potentially incomplete) without ties. In contrast, we focus on

the setting where all women must report a complete list, which

indicates that women can only permute their true preferences.

This type of manipulation comes directly from the independent

recruitment programs in China, where the universities can only

permute the ordering of the students by adding scores to some of

them, but are not allowed to remove any student from the lists.

We model the coalition manipulation problem as a game among

the members of the coalition (called the manipulation game here-

after). We first show that a coalition of women could get worse off

if they perform their optimal single-agent manipulation separately

(see Table 1 for details). This result confirms that there are conflicts

between different universities in the same league so that they need

to find a way to manipulate jointly to achieve a better outcome.

We present an efficient algorithm to find a strategy profile such

that (1) the induced matching is stable with respect to the true

preference, (2) the induced matching is Pareto-optimal among all

stable matchings that can be achieved by coalitional permutation

manipulations, and (3) the strategy profile is inconspicuous, where

inconspicuous manipulations are those in which each woman of

the coalition only moves one man to a higher rank (Algorithm 1

and Algorithm 2). Surprisingly, we show that such a strategy pro-

file actually forms a Nash equilibrium of the manipulation game

(Theorem 5.2). Therefore, the strategy profile found by our algo-

rithm captures both the cooperation and the competition among

the universities in the same league. This result implies that it is com-

putationally easy to find a “profitable” manipulation that is weakly

better off and Pareto-optimal for all members of the coalition, sup-

porting the wide conjecture that such leagues of universities can

benefit from forming coalitions.

All these results confirm the belief of the Ministry of Education

that such leagues of universities are unfair for other universities. In

the end, we show that it is NP-complete to find a manipulation that

is strictly better off for all members of the coalition (Theorem 6.1).

This result demonstrates a sharp contrast between weakly better-

off outcomes and strictly better-off outcomes: if a manipulation

is costly so that every manipulator must be strictly better off to

ensure nonnegative payoff, a coalition manipulation is unlikely to

happen due to computational burdens.

Our results also give answers to the open problem raised by

Gusfield and Irving [14] on what can be produced by permutation

manipulations (see also [23] and [32] for more of the problem).

1.3 Related Works
There is a large body of literature that focuses on finding manipula-

tions for women when fixing men’s preferences in the Gale-Shapley

algorithm. Gale and Sotomayor [10] show that it is possible for all

women to strategically truncate their preference lists so that each

of them is matched with their partner in the W-optimal matching,

and Teo et al. [33] provide a polynomial time algorithm to find the

optimal single-agent truncation manipulation.

Teo et al. [33] study permutation manipulations, where a woman

can report any permutation of her true preference list. Their work is

motivated by the primary student assignment process in Singapore.

They give an efficient algorithm to compute the best manipulation

for a single manipulator. Vaish and Garg [34] shows that the result-

ing matching from optimal singleton permutation manipulation is

stable with respect to true preference lists and there exists an incon-

spicuous singleton manipulation which is optimal. Gupta et al. [12]

extends the algorithm from Teo et al. [33] to the so-called P-stable
(stable with respect to preferences P ) Nash equilibrium setting. Aziz

et al. [6] also study permutation manipulations in a many-to-one

setting, but focus on a single manipulator with quota more than

one. Pini et al. [27] create a stable matching mechanism and show

that for a single agent, it is computationally hard to manipulate the

matching result. All the results, except for the last, do not apply to

cases where a coalition of women jointly manipulate.

2 PRELIMINARIES
We consider a stable matching model with a set of men M and a

set of womenW , where only complete and strict preference lists

are allowed.
2
The preference list of a manm, denoted by P(m), in

a preference profile P , is a strict total order ≻Pm over the set of

womenW . Letw1 ≻Pm w2 denote thatm prefersw1 tow2 in profile

P . Similarly, the preference list P(w) of a womanw is a strict total

2
We consider the case where men also report complete preference lists for simplicity.

Our result can be generalized to the case where men may report incomplete preference

lists.



order overM . For simplicity, we sometimes use ≻w to denote the

true preference list when it is clear from the context.

A matching is a function µ : M ∪W 7→ M ∪W . We write

µ(m) = w if a manm is matched to a womanw . Similarly, µ(w) =m
if w is matched tom. Also, µ(m) = w if and only if µ(w) = m. We

will also write µ(m) =m (or µ(w) = w) ifm (orm) is not matched.

For two matchings µ1 and µ2, if for allw ∈W , µ1(w) ⪰w µ2(w), we

say µ1 ⪰W µ2. If in a matching µ, a manm and a womanw are not

matched together, yet prefer each other to their partners in µ, then
(m,w) is called a blocking pair. A matching is stable if and only if it

contains no blocking pair.

The Gale-Shapley algorithm is not truthful for women [8]. Given

a set of women manipulators, the algorithm can be thought of as a

game (henceforth, the manipulation game), between them.

Definition 2.1 (Manipulation game). Given a true preference pro-

file P , a manipulation game is a tuple (L,A), where:

(1) L ⊆W is the set of manipulators;

(2) A =
∏

i ∈L Ai is the set of all possible reported preference

profiles.

The outcome of the manipulation game (also called induced

matching in this paper) is the matching resulted from the Gale-

Shapley algorithm with respect to the reported preference profiles.

A manipulator’s preference in this game is her true preference in P .
Motivated by the NCEE in China, we focus on the setting where

all women must report a complete list of men, which indicates that

women can only permute their true preferences in the manipulation.

Definition 2.2 (Permutation manipulation). Let O be the set of

strict total orders overM . In permutation manipulations, Ai = O,
∀i ∈ L.

Let P(M) = (P(m) : m ∈ M) be the preference profile of all

men. Similarly, denote the preference profiles for all women, all

manipulators and all non-manipulators by P(W ), P(L) and P(N ),

respectively, where N = W \ L is the set of non-manipulators.

Thus the overall preference profile is P = (P(M), P(N ), P(L)). De-
note by S(P(M), P(W )) the set of all stable matchings under profile

(P(M), P(W )).Let SA(P(M), P(W )) ⊆ S(P(M), P(W )) be the set of all

stable matchings that can be achieved by a coalition manipulation

of L. We sometimes write SA for short when (P(M), P(W )) is clear

from the context. We define Pareto-optimality within the set SA.

Definition 2.3 (Pareto-optimal matching). A matching µ is Pareto-

optimal if µ ∈ SA and there is no µ ′ ∈ SA such that all manipulators

are weakly better off and at least one is strictly better off.

We say a strategy profile P(L) of a manipulation game is Pareto-

optimal if its induced matching is Pareto-optimal. In a manipulation

game, the solution concept we are interested in is Nash equilibrium.

Definition 2.4 (Nash equilibrium). A preference profile P(L) =⋃
l ∈L P(l) of a manipulation game is a Nash equilibrium if ∀l ∈

L, l cannot get a strictly better partner with respect to the true

preference list by reporting any other preference list.

Our algorithm is enabled by two special structures, the rotation
[13] and the suitor graph [23].

2.1 Rotations
The concept of rotations was first introduced by Irving [17] when

solving the stable roommate problem, which is a natural general-

ization of the stable marriage problem.

In the Gale-Shapley algorithm, if a womanwi rejects a manmj ,

then wi must have a better partner than mj in the W-pessimal

matching. Thus in any stable matching, wi cannot be matched

with any man ranked below mj in wi ’s list. As a result, we can

safely remove all impossible partners from each man or woman’s

preference list after each iteration of the algorithm. We call each

man or woman’s preference list after the removal a reduced list, and
the set of all reduced lists a reduced table.

Definition 2.5 (Rotation). A rotation is a sequence of men R =
(m1,m2, . . . ,mr ), where the first woman inmi+1’s reduced list is

the second inmi ’s reduced list (i + 1 is taken modulo r).

Note that rotations are known as improvement cycles in some

literature and is useful in converting the M-optimal matching to

the W-optimal matching [5, 11, 16].

We also use R = (M,W,W ′) to represent a rotation, whereM

is the sequence of men andW andW ′
are the sequences of the first

and the second women in M’s reduced lists. Since Wi+1 = W ′
i

by definition of rotations, we writeWr =W ′
, whereWr

is the

sequence W with each woman shifted left by one position. We

may sometimes usemi andwi to mean the i-th agent inM andW

when the order is important.

After the termination of the Gale-Shapley algorithm, one can

still change the matching by eliminating rotations. The elimination

of a rotation R is to force each womanwi inW to reject her current

proposermi and letmi propose to wi+1. It is clear that after the

elimination, each woman still holds a proposal, i.e. there is still a

matching between men and women. More importantly, it can be

shown that thematching is stablewith respect to the true preference.

We say a rotation R = (M,W,Wr ) moves mi from wi to wi+1
and moveswi frommi tomi−1 since after eliminating the rotation,

the corresponding matching matchesmi andwi+1. It is known that

each stable matching corresponds to a set of rotations, and there

exists an order of elimination that produces the matching, which

we do not discuss in detail here, but refer readers to [14].

2.2 Suitor Graph
Suitor graph is another important structure for our analysis. It

is proposed by Kobayashi and Matsui [23] when considering the

problem that given a preference profile for all truthful agents P(M)

and P(N ), is there a profile P(L) for the manipulators such that the

M-optimal matching of the combined preference profile is a certain

matching µ? The detailed definition of suitor graph is as follows:

Definition 2.6 (Suitor graph; Kobayashi and Matsui [23]). Given a

matching µ, a preference profile for all men P(M) and a preference

profile for all non-manipulators P(N ), the corresponding suitor

graph G(P(M), P(N ), µ) is a directed graph (V ,E), which can be

constructed using the following steps:

(1) V = M ∪W ∪ {s}, where s is a virtual vertex;
(2) ∀w ∈W , add edges (w, µ(w)) and (µ(w),w), and let δ (w) =

{m | w ≻m µ(m)};

(3) ∀w ∈ L and for eachm in δ (w), add edges (m,w);



(4) ∀w ∈ N , if δ (w) is nonempty, add the edge (m,w), wherem
isw’s favorite in δ (w);

(5) ∀w ∈W , if δ (w) = ∅, add an edge (s,w) to the graph;

Kobayashi and Matsui [23] also give a characterization of the

existence of such profiles and an O(n2) time algorithm that can be

found directly from their constructive proof.

Theorem 2.7 (Kobayashi and Matsui [23]). Given a matching
µ, a preference profile with P(M) for all men and P(N ) for all non-
manipulators, there exists a profile for the manipulators P(L) such
that µ is the M-optimal stable matching for the total preference profile
(P(M), P(N ), P(L)), if and only if for every vertexv in the correspond-
ing suitor graph G(P(M), P(N ), µ), there exists a directed path from
s to v (s is the virtual vertex in the graph). Moreover, if such a P(L)
exists, it can be constructed in O(n2).

3 PARETO-OPTIMAL STRATEGY PROFILES
We analyze the manipulation problem in the independent recruit-

ment program of China’s universities. In fact, this is also an open

problem raised by Gusfield and Irving [14] on what can be achieved

by permutation manipulations. Formally, we have the following

results in this section.

Theorem 3.1. There exists a polynomial time algorithm (Algo-
rithm 1) that, given any complete preference profile P and any set of
manipulators L ⊆W as input, computes a strategy profile P ′(L) such
that when L reports P ′(L), the induced matching µ ′ is Pareto-optimal.3

Moreover, our algorithm provides an algorithmic characteriza-

tion of Pareto-optimal optimal matchings.

Theorem 3.2. A matching is Pareto-optimal if and only if it is an
induced matching of a strategy profile found by Algorithm 1.

3.1 Conflicts between Manipulators
Before we develop our algorithms, we first show an example to

demonstrate that a coalition of women could get worse off if they

perform their optimal single-agent manipulation separately.

m1 w1 w4 w2 w3

m2 w1 w3 w2 w4

m3 w2 w3 w1 w4

m4 w2 w4 w1 w3

(a) Men’s preference lists.

w1 m3 m2 m1 m4

w2 m1 m4 m3 m2

w3 m2 m3 m1 m4

w4 m4 m1 m3 m2

(b) Women’s preference lists.

Table 1: Example of non-cooperativeness

Consider the preference lists in Table 1. The M-optimal matching

is {(m1,w4), (m2,w1), (m3,w3), (m4,w2)}. Suppose L = {w1,w2}

and consider individual manipulations byw1 andw2.

(1) w1 exchangesm1 andm2 and get

{(m1,w4), (m2,w3), (m3,w1), (m4,w2)};

(2) w2 exchangesm3 andm4 and get

{(m1,w2), (m2,w1), (m3,w3), (m4,w4)};

3
It is weakly better off for all manipulators to follow the strategy P ′(L) rather than P ,
since µ′ is stable under P , which is preferred by each manipulator to the W-pessimal

matching under P .

In both cases,w1 andw2 canmanipulate to get theirW-optimal part-

ner and these manipulations are their optimal single-agent manip-

ulation. However, if they jointly perform their optimal single-agent

manipulations, the inducedmatching is (m1,w1), (m2,w3), (m3,w2),

(m4,w4). It is surprising that they both get worse off than the match-

ing corresponding to their true preference lists.

This example shows a sharp contrast between permutation ma-

nipulations and general manipulations, where removing men from

the preference lists is allowed. In general manipulations, women

can jointly perform their optimal single-agent manipulations to be

matched with their W-optimal partner [10, 33].

3.2 Our Algorithm
To develop our algorithm, we extensively use two structures, rota-

tions [17] and suitor graphs [22], introduced in Section 2.1 and 2.2

respectively. We further develop several new structures such as

maximal rotations and principle sets to derive connections between

suitor graphs and permutation manipulations.

Notice that eliminating more rotations results in weakly bet-

ter matchings for all women. Thus, the manipulators’ objective

is to eliminate as many rotations as possible by permuting their

preference lists. Since there is no direct rotation elimination in the

Gale-Shapley algorithm, we try to figure out what kind of rota-

tions can be eliminated, i.e., after eliminating these rotations, the

corresponding matching is in SA.
We first analyze the structure of the sets of rotations. Rotations

are not always exposed in a reduced table. Some rotations become

exposed only after other rotations are eliminated. Thus, we define

the precedence relation between rotations and based on that, we

incorporate notions from [18] (closed set, maximal rotations), and

introduce the concept principle sets to analyze the problem.

The high-level idea behind our algorithm is that, with our theo-

retical analysis, we can actually reduce the search space from the

set of all closed sets to the set of all principle sets, which enables

our algorithm to run in polynomial time.

Definition 3.3 (Precedence). A rotation R1 = (M1,W1,W
r
1
) is

said to explicitly precede another R2 = (M2,W2,W
r
2
) if R1 and R2

share a common manm such that R1 movesm from some woman

tow and R2 movesm fromw to some other woman. Let the relation

precede be the transitive closure of the explicit precedence relation,

denoted by ≺. Also, R1 ∼ R2 if neither R1 ≺ R2 nor R2 ≺ R1.

Definition 3.4 (Closed set). A set of rotations R is closed if for

each R ∈ R, any rotation R′
with R′ ≺ R is also in R. A closed set

C is minimal in a family of closed sets C , if there is no other closed

set in C that is a subset of C. Moreover, define CloSet(R) to be the

minimal closed set that contains R.

Definition 3.5 (Maximal rotation & Principle set). Given a closed

set of rotations R, R is amaximal rotation of R if no rotation R′ ∈ R

satisfies R ≺ R′
. LetMax(R) be the set of all the maximal rotations

in R. Furthermore, R is a principle set ifMax(R) contains only one

rotation. We will slightly abuse notations and write CloSet(R) to
mean the principle set CloSet(R) ifMax(R) = {R}.

Henceforth, R1 precedes R2 if R2 can only be exposed after R1
is eliminated. A rotation R can only be exposed after all rotations

preceding R are eliminated. Thus only closed sets can be validly



eliminated. Also, a closed set of rotations R is uniquely determined

by Max(R). Therefore, given a closed set R, the corresponding

matching after eliminating rotations in R is determined byMax(R).
The following theorem shows that closed sets of rotations are

all that we need to consider.

Theorem 3.6 (Irving and Leather [18]). Let S be the set of all
stable matchings for a given preference profile, there is a one-to-one
correspondence between S and the family of all closed sets.

Therefore, we need to understand the changes made to the suitor

graph when a rotation R is eliminated. We keep track of every

proposal made by men in R and modify the graph accordingly. We

first assume that the virtual vertex s is comparable with each man

and for everyw ∈W and everym ∈ M ,m ≻w s . When eliminating

a rotation, we follow the steps below to modify the graph:

(1) Let all women in R reject their current partner, i.e., delete

the edge (wi ,mi ) involved in R for each i;
(2) Arbitrarily choose a man mi in R who does not have an

incoming edge from a woman and let him propose to the

next womanw in his preference list:

(a) Ifw is a manipulator, add an edge frommi tow and delete

edge (s,w) if it exists;

(b) Ifw is not a manipulator, then comparemi with the two

men (one is possibly s) in V ′ = {v | (v,w) ∈ E}. Ifmi is

not the worst choice, add an edge frommi tow and delete

the worst edge, and we sayw is overtaken bymi ;

(c) Ifw acceptsmi , add an edge fromw tomi ;

(3) Repeat step 2 until all men in R are accepted.

Let G and G ′
be the suitor graphs corresponding to the reduced

tables before and after the elimination of R. It is easy to check that

after modifyingG using the steps defined above, the resulting suitor

graph is exactlyG ′
. From Theorem 2.7, the most important property

of the suitor graph is the existence of a path from s to any other

vertex. Therefore, we focus on the change of strongly connected
components and their connectivity in the suitor graph before and

after the elimination of rotations.

Definition 3.7. A sub-graph G ′
is strongly connected if for any

two vertices u,v inG ′
, there is a path from u to v inG ′

. A strongly

connected component is a maximal strongly connected sub-graph.

The following lemma gives some connectivity properties of the

suitor graph after eliminating a rotation.

Lemma 3.8. After eliminating a rotation R, (1) all agents in R are in
the same strongly connected component; (2) vertices that are formerly
reachable from a vertex in R remain reachable from R; (3) vertices
that are overtaken during the elimination of R are reachable from R.

To prove Lemma 3.8, we first show the following claim.

Claim 1. For each manmi in R, in the procedure of eliminating the
rotation R,wi+1 (the subscript is taken modulo r ) is the first woman
to accept him, and each woman in R accepts only one proposal during
the procedure.

Proof. According to the definition of rotations,wi+1 is the sec-

ond in mi ’s reduced list. If there are other women between wi
andwi+1 inmi ’s preference list, they are absent from the reduced

list because these women already hold proposals from better men.

Henceforth, even thoughmi proposes to these women, they reject

him. Butmi is inwi+1’s reduced list sincewi+1 is inmi ’s. Therefore,

mi is a better choice forwi+1 andwi+1 accepts him.

After the elimination, each manmi in R proposes to wi+1 and

each man is accepted only once. Also each womanwi+1 holds a new

proposal frommi and thus accepts at least once. The conclusion is

immediate since the total number of accepted men is equal to the

total number of women who accept a new partner. □

Proof of Lemma 3.8. For each mi in R, R moves mi from wi
to wi+1. As a result, there exists an edge from wi+1 to mi . We

now prove that eachmi has an outgoing edge pointing towi , and

all agents in R then form a cycle, and thus in the same strongly

connected component. Before the elimination, wi is the partner

of mi , so there is an edge from mi to wi . If wi is a manipulator,

the edge (mi ,wi ) is not removed during the elimination according

to the steps described above. Ifwi is not a manipulator, then only

two incoming edges are remained after the elimination and these

edges are from the best two men among those who propose to

her. According to Claim 1, only one man, namelymi−1, is accepted.

Thus,mi−1 is the best suitor ofwi . We claim thatmi is the second

best and the edge frommi is still in the suitor graph. Otherwise,

supposem′
is a better choice thanmi to wi . Thenm

′
is also in R.

We letm′
propose first, andwi acceptsm

′
, which makeswi accepts

at least twice. A contradiction.

Since each woman can be reached from her partner before the

elimination, it is without loss of generality to assume that a vertex

v can be reached from a manm in R through a path p. Let u be the

last vertex in p such that u is in R or is overtaken by a vertex in

R. If u is in R, then after the elimination,m can reach u since they

are in the same strongly connected component. If u is overtaken

by some vertexm′
, then during the elimination, an edge (m′,u) is

added to the graph. Thus,m can reach u throughm′
. Henceforth,

in any case, u is reachable. Since in p the vertices between u and v
are neither in R nor overtaken by some vertex in R, the path from u
to v remains in the modified graph. Therefore v is reachable from

m and also from any vertex in R for they are in the same strongly

connected component after the elimination. □

With Lemma 3.8, we do not need to worry about vertices that are

reachable from vertices in R, for they will remain reachable after the

elimination. Also, vertices that are overtaken and the other vertices

reachable from overtaken vertices can be reached from vertices in

R after the elimination.

In fact, every vertex is reachable from s in the initial suitor graph.

Therefore, if a vertex becomes unreachable from s after eliminating

a rotation, there must exist some edge that is deleted during the

elimination, which only happens when some woman is overtaken

if she is a non-manipulator. The next lemma extends Lemma 3.8 to

a closed set of rotations.

Lemma 3.9. After eliminating a closed set of rotations R, each v
in R is reachable from at least one vertex inMax(R), i.e., there exists
a path to v from a vertex inMax(R).

Proof. We eliminate the rotations in R one by one and generate

a sequence of rotations q = (R1,R2, . . . ,Rn ). Ri is the i-th rotation

to eliminate. After eliminating Rn , all rotations in R are eliminated.



Denote qi =
⋃i
j=1 Rj . For each i , qi is a closed set. We call i the

sequence number of qi and we prove by induction on the sequence

number that after eliminating qi , all vertices in qi can be reached

from a vertex in Max(qi ). For i = 1, qi = {R1}, the case is trivial
from Lemma 3.8. Assume the statement is true for i = k , then for i =
k+1, we only eliminate onemore rotationRk+1 than in the case with
i = k . Rk+1 is inMax(qk+1) otherwise there exists another rotation
R′

in qk such that Rk+1 ≺ R′
and then qk is not a closed set. Let

D = Max(qk ) \Max(qk+1). Rotations in D are no longer maximal

rotations because Rk+1 is eliminated, which indicates that rotations

in D explicitly precede Rk+1. Henceforth, every rotation R in D has

a common agent with Rk+1 and each vertex u reachable from R
is reachable from that common agent. According to Lemma 3.8, u
can be reached from Rk+1. For each vertex u ′ that is not reachable
from rotations in D, it must be reachable from another rotation R′

inMax(qk ) through path p and R′
is still inMax(qk+1). If p is still

in the suitor graph, then we are done. Otherwise, some vertices in

p must be in Rk+1 or overtaken by a man in Rk+1. Let z be the last
vertex inp such that z is inRk+1 or overtaken. z can be reached from
Rk+1 and the path from z to u ′ is not affected by the elimination.

Therefore, u ′ is reachable from Rk+1. □

If R2 explicitly precedes R1, then they must contain a common

man. Therefore, after eliminating R1, vertices in R1 can reach any

vertex that is previously reachable from R2. The analysis goes on
recursively until some rotation has no predecessors.

Given a closed set of rotations R, we say R can be eliminated for

simplicity, if the correspondingmatching after eliminating rotations

in R is in SA. The following lemma provides us a simpler way to

check whether a closed set of rotations can be eliminated.

Lemma 3.10. A closed set of rotations R can be eliminated if and
only if after eliminating R, every vertex inMax(R) can be reached
from s .

Proof. If a closed set of rotations R can be eliminated, then

every vertex is reachable after R is eliminated. As a result, any

member ofMax(R) is reachable.
If after eliminating R, any member of Max(R) can be reached

from s , then we need to show that all other vertices are also reach-

able from s . We split all vertices into two parts. Let V denote the

set of all the vertices that can be reached from members ofMax(R).
If a vertex v is in V , then v is reachable from s throughMax(R). If
v is not in V , then in the initial graph, there is a path p from s to v .
We claim that no vertex in path p is either in any of the rotations in

R or overtaken when eliminating a rotation. Otherwise, according

to Lemma 3.9, v is reachable fromMax(R). Thus, the path p is still

in the graph after eliminating all the rotations in R. □

However, we still cannot afford to enumerate all possible closed

sets of rotations, whose number is exponential with respect to the

number of women.

Theorem 3.11. Given a closed set of rotations R, if R can be
eliminated, then there exists a rotation R ∈ R such that CloSet(R)
can be eliminated.

In order to prove Theorem 3.11, we first show the following claim

about the maximal rotations of a closed set that can be eliminated.

Claim 2. If a closed set R can be eliminated, then every rotation
inMax(R) must contain a manipulator.

Proof. Assume there exists a rotation R ∈ Max(R) such that R
contains no manipulator. We can change the order of elimination to

make R the last to eliminate. We prove that after eliminating R, any
vertex in R is not reachable from s . From the proof of Lemma 3.8,

we know that all vertices in R form a cycle after eliminating R. Each
man in R has only one incoming edge from his current partner who

is also in R. Each woman has two incoming edges, one from her

partner in R and another from her former partner which is also in

R. Thus, every vertex in R has no incoming edges from outside the

cycle and thus is not reachable from s . □

Proof of Theorem 3.11. LetV be the set of all vertices in R. Af-

ter eliminating R, we arbitrarily choose a vertexv inV . In the corre-

sponding suitor graph, there is a path p = (v0 = s,v1,v2, . . . ,vn =
v) from s to v since R can be eliminated. Let u be the first vertex

in p such that u is in V . u is obviously not v1, or otherwise the

edge (s,u) will be deleted. Moreover, u must be in L, since any

non-manipulator can only be reached from a node in V if she is

overtaken during the elimination. Assume u = vl and l > 1. Then

the sub-path p′ = (v0,v1, . . . ,vl = u) is not affected (no vertices

in V or overtaken) during the elimination. Henceforth, p′ is in the

original suitor graph before eliminating R. Now we consider the set

R ′ = {R ∈ R|u ∈ R}. For any R in R ′
, if we eliminateCloSet(R), the

sub-path is also not affected. ThereforeCloSet(R) can be eliminated

according to Lemma 3.10. □

The above theorem reduces the search space from the set of closed
sets to the set of principles sets. We are ready to design Algorithm 1

to compute a Pareto-optimal strategy profile. For any iteration of

Algorithm 1, the matching at the beginning of each iteration is in SA.
Therefore, according to Theorem 3.11, if a closed set of rotations R

can be eliminated, we can always find a principle set P∗
contained

in R such that P∗
can be eliminated. Since the number of principle

sets equals the number of rotations, which is polynomial and can

be efficiently computed [13], given a matching in SA, we figure out
an efficient way to find a weakly better matching in SA. Using this

method as a sub-routine, we are able to design an algorithm to find

a Pareto-optimal strategy profile for permutation manipulations.

Algorithm 1: Find a Pareto-optimal strategy profile

Find the set of all rotations R and all principle sets

P = {CloSet(R) | R ∈ R};

while True do
Construct C = {P ∈ P | P can be eliminated};

if C = ∅ then
Construct P(L) for L and return;

else
Arbitrarily choose a principle set P∗ ∈ C and

eliminate P∗
;

3.2.1 Correctness of Algorithm 1. To prove the correctness of

the algorithm. We begin with the following lemma.



Lemma 3.12. Given a set of manipulators L ∈ W , and the true
preference profile P = (P(M), P(W )). Let µ be any matching in SA
and R be the corresponding closed set of rotations. Then there exists
a preference profile Pµ (L) for L such that µ is the M-optimal stable
matching of the preference profile Pµ = (P(M), P(N ), Pµ (L)), and the
reduced table of P after eliminating R is exactly the reduced table of
Pµ before eliminating any rotation.

Proof. Since µ is in SA, there exists P ′ = (P(M), P(N ), P ′(L))
such that µ is the induced matching for P ′. For each w ∈ L, we
modify P ′(w) as follows:

(1) delete all menm such thatm ≻Pw µ(w);

(2) reinsert them at the beginning according to their order in

w’s true preference list;

(3) move µ(w) to the position right after all menm such that

m ≻Pw µ(w);

Denote the modified preference profile by P ′µ . In fact, P ′µ is the Pµ
we are looking for.

We first prove that µ is the M-optimal matching under P ′µ . After
the first two steps of modifications, the M-optimal matching is still

µ, since for each w , we only change the position of men ranked

higher than µ(w) in her true preference list, who must have not

proposed tow under P ′, and thus do not change the output of the

Gale-Shapley algorithm. Otherwise, if a manmwithm ≻Pw µ(w) has

proposed tow , then we must havew ≻P
′

m µ(m), which is equivalent

to w ≻Pm µ(m). Thus (m,w) forms a blocking pair in µ under the

true preference profile P , contradicting to the stability of µ under P .
In the third step, we move µ(w) to the position right after all men

ranked higher than µ(w) in the true preference list P(w). Consider

all the menm′
withm′ ≻P

′

w µ(w) but µ(w) ≻
P ′
µ

w m′
.m′

must have

not proposed tow under P ′, or otherwise µ(w) cannot be the partner

of w . Therefore, the positions of the men in P ′µ do not affect the

output of the Gale-Shapley algorithm.

LetTPµ be the reduced table of P after eliminating R andTP ′
µ
be

the reduced tables of P ′µ . We already know that for each woman,

her partners in the two reduced tables are the same, which is µ(w).

In fact, a change of reduced table happens if and only if a woman

accepts a proposal from a manm and removes everyone ranked

belowm in her preference list. So in the reduced list of each woman,

no man is ranked below her current partner. Therefore, to prove

thatTPµ is the same asTP ′
µ
, it suffices to show that for each woman,

P and P ′µ are the same after removing all men ranked below her

current partner, which is clear from the construction of P ′µ . □

From Theorem 3.6, we know that only closed sets need to be con-

sidered. Although Claim 2 has already ruled out all closed sets that

have a maximal rotation containing only non-manipulators, there

are still exponentially many possibilities. However, Theorem 3.11

shows that every closed set that can be eliminated contains a princi-

ple set, which can also be eliminated. A natural idea is to iteratively

grow the closed set by adding principle sets. The above lemma

shows that after each iteration, we can construct a problem that has

the current matching as its initial matching, and contains rotations

that are not yet eliminated. If we find a principle set that can be

eliminated in the constructed problem, it can also be eliminated in

the original problem.

3.2.2 Complexity of Algorithm 1. To analyze the time complex-

ity of Algorithm 1, we define a graph describing the precedence

relation between rotations.

Definition 3.13 (Precedence graph). Given a set of rotations R, let

D be a directed acyclic graph, where the vertices in D are exactly

R, and there is an edge (R1,R2) in D if R1 ≺ R2. Moreover, let H be

the transitive reduction of D defined above, and Hr be the graph H
with all edges reversed.

Note that H is exactly the directed version Hasse diagram of the

precedence relation between rotations. For a rotation R, CloSet(R)
is the set of vertices that can be reached from R through a directed

path in Hr . We split the algorithm into the initialization part and

iteration part, and assume |M | = |W | = n.
In the initialization part, we first compute the initial matching

using the Gale-Shapley algorithm, which can be computed inO(n2)
time. Next we find all rotations with respect to preference profile P
and also find all the principle sets. These two operations depend

on the graph Hr . However, the graph H is the transitive reduction

of D, and the construction of H is somewhat complex. Gusfield

[13] discusses how to find all rotations, whose number is O(n2), in
O(n2) time. Instead of constructing H , Gusfield considered a sub-

graph H ′
of D, whose transitive closure is identical to D. Moreover,

H ′
can be constructed in O(n2) time. We will not discuss how to

construct H ′
in detail but only apply Gusfield’s results here. Then

for each rotation R, we only need to search H ′
to find CloSet(R),

which takes O(n2) time. Thus, we finish the initialization step in

O(n4) time since there are O(n2) rotations altogether.
The iteration part is the bottleneck of the algorithm. At least

one rotation is eliminated for each iteration, and thus O(n2) iter-
ations are needed. Inside each iteration, we need to construct the

set C . There are O(n2) principle sets and to determine whether

a principle set can be eliminated, we need to simulate the Gale-

Shapley algorithm and modify the suitor graph accordingly. After

the modification, we traverse the suitor graph to see if each vertex

is reachable. Both of the two operations takes O(n2) time. Thus,

the construction of C takes O(n4) time. In the If-Else statement,

if we find a principle set that can be eliminated, we eliminate the

principle set and modify the suitor graph in O(n2). Otherwise, we
traverse the suitor graph to construct the preference profile for L
according to Theorem 2.7. Thus, the If-Else statement takes O(n2)
time and totally, the time complexity is O(n6).

3.3 Algorithmic Characterization
Notice that at each iteration, the algorithm has multiple principle

sets to select from. To prove our characterization result in Theorem

3.2, we have already shown that for each Pareto-optimal matching

µ, there exists a way to select the principle sets to eliminate in

each iteration such that the induced matching from the output of

Algorithm 1 is µ.

4 INCONSPICUOUSNESS
In fact, if a stable matching with respect to the true preference lists

can be obtained by permutation manipulations, the manipulators

can also obtain this matching by an inconspicuous manipulation.



Definition 4.1 (Inconspicuous Strategy Profile). A strategy profile

is inconspicuous if each manipulator permutes their preference

lists by moving only one man to a higher rank.

For convenience, we introduce a new notation Pro(w) for each

w ∈ W . A proposal list Pro(w) of a woman is a list of all men

who have proposed to her in the Gale-Shapley algorithm, and the

orderings of its entries are the same as her stated preference list.

A reduced proposal list contains the top two entries (first entry if

only one entry exists) of Pro(w), denoted by Pror (w). Clearly, each

womanw is matched to the first man of Pror (w).

Theorem 4.2. For any stable matching with respect to the true
preference lists that can be obtained by permutation manipulations,
there exists a preference profile for the manipulators, in which each
manipulator only needs to move at most one man to some higher
ranking, that yields the same matching.

Theorem 4.2 suggests that for each womanw , letm1 andm2 be

the two men in Pror (w)4, thenw can modify her true preference

list by movingm2 to the place right afterm1 to generate the same

induced matching (see Algorithm 2 for details).

Algorithm 2: Find a Pareto-optimal and inconspicuous prefer-

ence profile

Use Algorithm 1 to compute a strategy profile P ′(L) for L;
Compute Pror (w) for eachw ∈ L with respect to P ′(L);
forw in L do

Modify the true preference list P(w) by moving the second

man in Pror (w) to the position right after the first man in

Pror (w);

return the modified preference profile P ;

5 INCENTIVE PROPERTIES
Although we only have been focusing on constructing Pareto-

optimal strategy profiles, a Pareto-optimal strategy profile, which

is also inconspicuous, actually forms a Nash equilibrium.

Lemma 5.1. Suppose there is only one manipulator w . Then the
best matching µ ′ thatw can obtain via permutation manipulation is
stable with respect to the true preference P .

Proof. Let P ′ be the preference profile corresponding to µ ′.
Assume on the contrary that µ ′ is not stable with respect to P .
Then there must be a blocking pair. However, any pair (m,w ′)

with w ′ , w cannot block µ ′ under P , since they have the same

preferences in both P and P ′. It follows that the woman in the

blocking pair must bew . Let (m,w) be the blocking pair. We move

m to the top of P ′(w). If we run the Gale-Shapley algorithmwith the

new preference profile,m will still propose tow and will finally be

matched tow sincem is now the favorite man ofw . Butm ≻w µ ′(w),

which contradicts to the fact that µ ′ is the best matching that w
can obtain. □

Theorem 5.2. A strategy profile, that is Pareto-optimal and in-
conspicuous, forms a Nash equilibrium.
4
If womanw only receives one proposal, she cannot implement any manipulation.

Proof. Denote by P and µ the true preference profile of agents

and the corresponding matching. Let P1 be the preference profile
returned by Algorithm 2 given P , and µ1 be the corresponding

matching. It is clear that for eachw ∈ L, Algorithm 2 only changes

the order of the men ranked strictly lower than µ1(w). For the sake

of contradiction, assume there exists a manipulatorw ′ ∈ L such that
w ′

can get a strictly better partnerm (m ≻Pw ′ µ1(w
′)) by misreport-

ing a different preference list. Let P2 and µ2 be the preference profile
after misreporting and the corresponding matching. Without loss

of generality, we assume thatm is the best partner (according to

both P and P1) thatw
′
can obtain. Then we know from Lemma 5.1

that, µ2 is stable with respect to P1, and thus for eachw ∈W , we

have that µ2(w) ⪰
P1
w µ1(w). It follows that µ2(w) ⪰Pw µ1(w), since

Algorithm 2 does not change the order of the men who are ranked

higher than µ1(w). It follows that µ2 is also stable with respect

to P , and µ2 Pareto-dominates µ1. However, µ2 is not found by

Algorithm 2. A contradiction. □

Since all Pareto-optimal strategy profiles can be turned into an

inconspicuous one by Algorithm 2, we have the following corollary.

Corollary 5.3. All Pareto-optimal matchings can be induced by
a Nash equilibrium.

Therefore, Pareto-optimal matchings exactly address both the

cooperation and the competition among the women in the coalition.

6 STRICTLY BETTER-OFF OUTCOMES
The above results show that the Gale-Shapley algorithm is vul-

nerable to coalition manipulation. However, if a manipulation is

costly such that every manipulator needs to be strictly better off

after the manipulation to preserve individual rationality, we show

a hardness result:

Theorem 6.1. It is NP-complete to find a strategy profile, the
induced matching of which is strictly better off for all manipulators.

Therefore, when the manipulation is costly, a manipulation coali-

tion is unlikely to form and the Gale-Shapley algorithm is immune

to coalition manipulations. According to Theorem 6.1, one immedi-

ate corollary is that the number of Pareto-optimal matchings cannot

be polynomial in the number of men and women. For otherwise, we

can enumerate all such matchings by Algorithm 1 to develop a poly-

nomial time algorithm. Last but not least, we show that the problem

to compute the number of Pareto-optimal matchings, which are

strictly better off for all manipulators, is #P-complete.

Theorem 6.2. It is #P-complete to compute the number of Pareto-
optimal matchings, which are strictly better off for all manipulators.

7 CONCLUSION
Motivated by a real life phenomenon risen in recent years in the

college admissions in China, we consider manipulations by subsets

of women in the Gale-Shapley algorithm.We show that a Nash equi-

librium with Pareto-optimal matching can be efficiently computed

in general. These results confirm that the leagues of universities

can benefit from forming coalitions. On the contrary, we show that

it is NP-complete to find a strictly better off matching for all the ma-

nipulators, implying that Gale-Shapley algorithm is immune from

permutation manipulations when the manipulations are costly.
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