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Abstract
Over the past few years, ride-sharing has emerged
as an effective way to relieve traffic congestion.
A key problem for the ride-sharing platforms is to
come up with a revenue-optimal (or GMV-optimal)
pricing scheme and a vehicle dispatching policy
that incorporate geographic and temporal informa-
tion. In this paper, we aim to tackle this problem via
an economic approach. Modeled naively, the un-
derlying optimization problem may be non-convex
and thus hard to solve. To this end, we use a so-
called “ironing” technique to convert the problem
into an equivalent convex optimization one via a
clean Markov decision process (MDP) formulation,
where the states are the driver distributions and the
decision variables are the prices for each pair of
locations. Our main finding is an efficient algo-
rithm that computes the exact revenue-optimal (or
GMV-optimal) randomized pricing scheme, which
naturally induces the accompany vehicle dispatch-
ing policy. We also conduct empirical evaluations
of our solution through real data of a major ride-
sharing platform and show its advantages over fixed
pricing schemes as well as several prevalent surge-
based pricing schemes.

1 Introduction
The recently established applications of shared mobility, such
as ride-sharing, bike-sharing, and car-sharing, have been
proven to be an effective way to utilize redundant trans-
portation resources and to optimize social efficiency [Cramer
and Krueger, 2016]. Over the past few years, intensive
researches have been done on topics related to the eco-
nomic aspects of shared mobility [Crawford and Meng, 2011;
Pan et al., 2019].

Despite these researches, the problem of designing revenue
optimal pricing and vehicle dispatching schemes has been
largely open and one of the main research agendas in sharing
economy. There are at least two challenges when one wants to
tackle this problem in the real-world applications. First of all,
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due to the nature of transportation, the pricing and dispatch-
ing scheme must be geographically dependent. Secondly, the
pricing and dispatching scheme must take into consideration
the fact that supplies and demands in these environments may
change over time. As a result, it may be difficult to compute,
or even to represent a pricing and dispatching scheme for such
complex environments.

The dynamic ride-sharing market studied in this paper
is also known to have imbalanced supply and demand, ei-
ther globally in a city or locally in a particular time and
location. Such imbalance in supply and demand causes
severe consequences on revenues (e.g., the so-called wild
goose chase phenomenon [Castillo et al., 2017]). Surg-
ing price is a way to balance dynamic supply and demand
[Chen and Sheldon, 2016] but there is no known guaran-
tee that surge based pricing can dispatch vehicles efficiently
and solve the imbalanced supply and demand. Traditional
dispatching schemes [Laporte, 1992; Gendreau et al., 1994;
Ghiani et al., 2003] focus more on the algorithmic aspect of
static vehicle routing, without consider pricing. However,
vehicle dispatching and pricing problem are tightly related,
since a new pricing scheme will surely induce changes on
supply and demand as the drivers and passengers are strate-
gic. In this paper, our goal is to design pricing schemes that
induce desirable supplies and demands.

We introduce a propose graph-based, non-strategic model
for the dispatching problem that can be used for a wide range
of general settings. In the graph, each node refers to a region
in the city and each edge refers to a possible trip that includes
a pair of origin and destination as well as a cost associated
with the trip on this edge. The problem for the platform is
to set a price and specify the vehicle dispatch for each edge
at each time step. Drivers are considered to be non-strategic
in our model, meaning that they will accept whatever offer
assigned to them. The objective of the platform can either be
its revenue or the Gross Merchandise Volume (GMV) or any
convex combination of them.

Our model naturally induces a Markov Decision Process
(MDP) with the driver distributions on each node as states,
the price and dispatch along each edge as actions, and the
revenue as immediate reward. Although the corresponding
mathematical program is not convex (thus computationally
hard) in general, we apply the so-called “ironing” technique
that, without loss of generality, converts any non-convex in-



stance to a convex one. This important step makes the exact
optimal solutions can be efficiently computed and makes our
result possible for real large-scale ride-sharing market. Ex-
periment shows that our policy outperforms the two bench-
marks: FIXED and SURGE pricing policies both on revenue
and demand-supply balance aspects.

1.1 Related Works
Driven by real-life applications, a large number of researches
have been done on ride-sharing markets. Some of them em-
ploy queuing networks to model the markets [Iglesias et al.,
2019; Banerjee et al., 2015; Tang et al., 2016]. Iglesias et
al. [2019] describe the market as a closed, multi-class BCMP
queuing network which captures the randomness of customer
arrivals. They assume that the number of customers is fixed,
since customers only change their locations but don’t leave
the network. In contrast, the number of customers is dynamic
in our model and we only consider the one who asks for a ride
(or sends a request to the platform). Banerjee et al. [2015]
also use a queuing theoretic approach to analyze the ride-
sharing market and mainly focus on the behaviors of drivers
and customers. They assume that the drivers enter or leave the
market with certain possibilities. Bimpikis et al. [2019] take
account for the spatial dimension of pricing schemes in ride-
sharing markets. They price for each region and their goal
is to re-balance the supply and demand of the whole market.
However, we price for each routing and aim to maximize the
total revenue or social welfare of the platform. We also re-
fer the readers to the line of researches initiated by [Ma et
al., 2013] for the problems about the car-pooling in the ride-
sharing systems [Alonso-Mora et al., 2017; Zhao et al., 2014;
Chan and Shaheen, 2012].

Another work closely related to ours is by Banerjee et
al. [2017]. Their work is concurrent and has been developed
independently from ours. In particular, the customers arrive
according to a queuing model and their pricing policy is state-
independent and depends on the transition volume. Both their
and our models are built upon the underlying Markovian tran-
sitions between the states (the distribution of drivers over the
graph). The major differences are: (i) our model is built for
the dynamic environments with a very large number of cus-
tomers (each of them is non-atomic) to meet the practical sit-
uations, while theirs adopts static discrete agent settings and
it is not clear how their approach can extend to the dynamic
case. (ii) they assume explicitly that the revenue curve is con-
cave, while we don’t have this key assumption. In fact, based
on our evaluation of the real data, the revenue curve is often
non-concave. We solve the problem via randomized pricing
and transform the problem to a convex program. (iii) they
prove approximation bounds of the relaxation problem, while
we give exact optimal solutions of the problem by efficiently
solving the convex program.

2 Model
A passenger (called “she” or “her” hereafter) enters the ride-
sharing platform and sends a request including her origin and
destination to the platform. The platform receives the request
and determines a price for it. If the passenger accepts the

price, then the platform may decide whether to send a driver
(called “he” or “him” hereafter) to pick her up. Driver reloca-
tion is allowed, which means the platform is able to dispatch
drivers from one place to another even there is no request to
be served. By the pricing and dispatching methods above,
the goal of maximizing revenue or social welfare of the entire
platform can be achieved. Our model incorporates the two
methods into a simple pricing problem. In this section, we
define basic components of our model and consider two set-
tings: dynamic environments with a finite time horizon and
static environments with an infinite time horizon. Finally we
reduce the action space and give a simple formulation.
Requests We use a strongly connected digraphG = (V,E)
to model the geographical information of a city. Passengers
can only take rides from nodes to nodes on the graph. When
a passenger enters the platform, she expects to get a ride from
node s to node t, and is willing to pay at most x ≥ 0 for the
ride. She then sends to the platform a request, which is asso-
ciated with the tuple e = (s, t). Upon receiving the request,
The platform sets a price p for it. If the price is accepted by
the passenger (i.e., x ≥ p), then the platform tries to send
a driver to pick her up. We say that the platform rejects the
request, if no driver is available.

A request is said to be accepted if both the passenger ac-
cepts the price p and there are available drivers. Otherwise,
the request is considered to end immediately.
Drivers Clearly, within each time period, the total number
of accepted requests starting from s cannot be more than the
number of drivers available at s. Formally, let q(e) denote the
total number of accepted requests along edge e, OUT(v) be
the set of edges starting from v, and w(v) be the number of
currently available drivers at node v:∑

e∈OUT(v) q(e) ≤ w(v), ∀v ∈ V. (2.1)

In practice, both the total number of drivers and the number
of requests are very large. Hence we assume the drivers and
requests to be non-atomic. For simplicity, we normalize the
total amount of drivers on the graph to be 1, and also normal-
ize the number of requests accordingly. Therefore w(v) is a
real number in [0, 1]. Note that the amount of requests on an
edge e can be more than 1, if the requests on e are more than
the drivers on the graph.
Geographic information and travel time For each ac-
cepted request on edge e, the platform has to cover a trans-
portation cost cτ (e) for the driver. In the meanwhile, the as-
signed driver, who is currently at node s, will be unavailable
until he arrives at the destination t. Let ∆τ(e) be the travel
time from s to t and τ be the timestep of the driver leaving s.
He will be available again at timestep τ + ∆τ(e) at node t.
Formally, the amount of available drivers at v ∈ V is evolving
according to the following formula:

wτ+1(v) =wτ (v)−
∑
e∈OUT(v) qτ (e)

+
∑
e∈IN(v) qτ+1−∆τ(e)(e), (2.2)

where IN(v) is the set of edges ending at v. Here we add
subscripts to emphasize the timestep. Throughout this paper,
we focus on the discrete timestep setting, i.e., τ ∈ N.



Demand function As we mentioned, the platform could
set different prices for the requests. Such prices may vary
with the request edge e, timestep t, and the driver distribu-
tion but must be independent of the passenger’s private value
x as it is not observable. Formally, let Dτ (·|e) : R+ 7→
R+ be the demand function of edge e, i.e., Dτ (p|e) is the
amount of requests on edge e with private value x ≥ p in
timestep τ .1 Then the amount of accepted requests qτ (e) ≤
E[Dτ (pτ (e)|e)], where the expectation is taken over the po-
tential randomness of the pricing rule pτ (e).2

Design objectives In this paper, we consider the class of
state-irrelevant objective functions. A function is state-
irrelevant if its value only depends on the amount of accepted
requests on each edge q(e) but not the driver distribution of
the system w(v). Note that a wide range of objectives are
included in this class, such as the revenue of the platform:

REV(p, q) =
∑
e,τ E[(pτ (e)− cτ (e)) · qτ (e)],

and social welfare of the system:

WEL(p, q) =
∑
e,τ E[(x− cτ (e)) · qτ (e)].

In fact, our techniques work for any state-irrelevant objec-
tives. Let g(p, q) denote such an objective function and the
dispatching and pricing problem can be formulated as:

maximize
∑
e,τ g(pτ (e), qτ (e)|e) (2.3)

subject to (2.1) and (2.2).

Static and dynamic environment In general, our model is
defined for a dynamic environment in the sense that the de-
mand functionDτ and the transportation cost cτ could be dif-
ferent for each timestep τ . In particular, we study the problem
(2.3) in general dynamic environments with finite time hori-
zon from τ = 1 to T , where the initial driver distribution
w1(v) is given as input.

In addition, we also study the special case with static envi-
ronment and infinite time horizon, whereDτ ≡ D and cτ ≡ c
are consistent across each timestep.

2.1 Reducing the Action Space
We rewrite the problem to an equivalent reduced form by in-
corporating the action of dispatching into pricing, i.e., using
p to express q. The idea is straightforward: (i) for the re-
quests rejected by the platform, the platform could equiv-
alently set very high prices; (ii) if the platform dispatches
available drivers (without requests) from node s to t, one can
create virtual requests from s to twith 0 value and let the plat-
form set price 0 for them. In fact, we can assume without loss
of generality that the total amount of requests D(0|e) ≡ 1,
because one can always add enough virtual requests for the
edges with maximum demand less than 1 or remove the re-
quests with low values for the edges with maximum demand
exceeds the total driver supply 1.

1In practice, such a demand function can be predicted from his-
torical data [Tong et al., 2017; Moreira-Matias et al., 2013].

2The randomized pricing rule may set different prices for the re-
quests on the same edge e.

As a result, we may conclude that q(e) ≤ D(p|e). Since
our goal is to maximize the objective g(p, q), raising prices to
achieve the same amount of flow q(e) (such that E[D(p|e)] =
q(e)) never eliminates the optimal solution.
Observation 2.1. The original problem is equivalent to the
following reduced problem, where the flow variables qτ (e)
are uniquely determined by the price variables pτ (e):

maximize
∑
e,τ g(pτ (e), Dτ (pτ (e)|e))

subject to qτ (e) = E[D(pτ (e)|e)]
(2.1) and (2.2).

(2.4)

3 Problem Analysis
In this section, we demonstrate how the original problem
(2.4) can be equivalently rewritten as a Markov decision pro-
cess with a convex objective function. Formally,
Theorem 3.1. The original problem (2.4) of instance
〈G,D, g,∆τ〉 is equivalent to a Markov decision process
problem of another instance 〈G′, D′, g′,∆τ ′〉 with g′ being
convex.

The proof of Theorem 3.1 is immediate after Lemma 3.2
and 3.4. The equivalent Markov decision process problem
could be formulated as a convex program, and hence can be
solved efficiently.

3.1 Unifying Travel Time
Note that the original problem (2.4), in general, is not a MDP
by itself, because the current state wτ+1(v) may depend on
the action qτ+1−∆τ(e) in (2.2). Hence our first step is to
equivalently map the original instance to another instance
with travel time is always 1, i.e., ∆τ(e) ≡ 1:
Lemma 3.2 (Unifying travel time). The original problem
(2.4) of a general instance 〈G,D, g,∆τ〉 is equivalent to the
problem of a 1-travel time instance 〈G′, D′, g′,∆τ ′〉, where
∆τ ′(·) ≡ 1.

A working driver cannot handle another request before fin-
ishing the current one. And different requests may require
different time to finish. In order to distinguish between work-
ing drivers and idle ones (can provide service immediately), a
possible solution is to add an indicator variable to each driver.
Instead, we tackle this problem by adding virtual nodes into
the graph to replace the original edges. This operation splits
the entire trip into smaller ones, and at each timestep, all
drivers become available.

Proof. For edges with travel time ∆τ(e) = 1, we are done.
For edges with travel time ∆τ(e) > 1, we add ∆τ(e) − 1

virtual nodes into the graph, i.e., ve1, . . . , v
e
∆τ(e)−1, and the

directed edges connecting them to replace the original edge
e, i.e.,

E′(e) = {(s, ve1), (ve1, v
e
2), . . . , (ve∆τ(e)−2,

ve∆τ(e)−1), (ve∆τ(e)−1, t)},
E′ = ∪e∈EE′(e), V ′ = ∪e∈E{ve1, . . . , ve∆τ(e)−1} ∪ V.

We set the demand function of each new edge e′ ∈ E′(e) to
be identical to those of the original edge e: D′(·|e′) ≡ D(·|e).



An important but natural constraint is that if a driver han-
dles a request on edge e of the original graph, then he must
go along all edges in E′(e) of the new graph, because he can-
not leave the passenger halfway. To guarantee this, we only
need to guarantee that all edges in E′(e) have the same price.
Also, we need to split the objective of traveling along e into
the new edges, i.e., each new edge has objective function

g′(p, q|e′) = g(p, q|e)/∆τ(e),∀e′ ∈ E′(e).

One can easily verify that the above operations increase
the graph size to at most maxe∈E ∆τ(e)∗ times of that of the
original one. In particular, there is a straightforward bijection
between the dispatching behaviors of the originalG = (V,E)
and the new graph G′ = (V ′, E′). Hence we can always
recover the solution to the original problem.

3.2 Flow Formulation and Randomized Pricing
By Lemma 3.2, the original problem (2.4) can be formulated
as a MDP:

Definition 3.3 (Markov Decision Process). The vehicle pric-
ing and dispatching problem is a Markov decision process,
denoted by a tuple (G,D, g, S,A,W ), where G = (V,E) is
the given graph, D is the demand function, objective g is the
reward function, S = ∆(V ) is the state space including all
possible driver distributions over the nodes, A is the action
space, and W is the state transition rule:

wτ+1(v)− wτ (v) =
∑
e∈IN(v) qτ (e)−

∑
e∈OUT(v) qτ (e).

(3.1)

By using the pricing functions pτ (e) as the actions, the in-
duced flow qτ (e) = E[Dτ (pτ (e)|e)], in general, is neither
convex nor concave. In other words, both the reward g and the
state transition W of the MDP is non-convex. With random-
ized pricing and the “ironing” technique, we will show that
by formulating the MDP with the flows qτ (e) as actions, the
corresponding MDP is convex. This is a key step that enables
efficient computation of the exact optimal pricing scheme.

Lemma 3.4 (Flow-based MDP). In MDP (G,D, g, S,A,W )
with all possible flows as the action set A, i.e., A = [0, 1]|E|,
the state transition rules are linear functions of the flows and
the reward functions g are convex functions of the flows.

Proof. We first rewrite the prices pτ (e) as functions of the
flows qτ (e). In general, since the prices could be randomized,
the inverse function of qτ (e) = E[Dτ (pτ (e)|e)] is not unique.

Note that conditional on fixed flows qτ (e), the state tran-
sition of the MDP is also fixed. In this case, different prices
yielding such specific flows only differ in the rewards. In
other words, it is without loss of generality to let the inverse
function of prices be as follows:

pτ (e) = arg maxp gτ (pτ (e), qτ (e)|e),
s.t. qτ (e) = E[Dτ (pτ (e)|e)].

In particular, since the objective function g we studied in
this paper is linear and weakly increasing in the prices p and
the demand function D(p|e) is decreasing in p, the inversed
price function could be defined as follows:

Figure 1: Ironed objective function

• Let gτ (q|e) = gτ
(
D−1
τ (q|e), q|e

)
, i.e., the objective

obtained by setting the maximum fixed price p =
D−1
τ (q|e) such that the induced flow is exactly q;

• Let ĝτ (q|e) be the ironed objective function, i.e., the
smallest concave function that upper-bounds gτ (q|e)
(see Figure 1);
• For any given qτ (e), the maximum objective on edge e

is ĝτ (qτ (e)|e) and could be achieve by setting the price
to be randomized over D−1

τ (q′|e) and D−1
τ (q′′|e).

Finally, we prove the above claim to complete the proof of
Lemma 3.4.

By the definition of ĝτ (q|e), for any randomized price p,
Ep[gτ (Dτ (p|e)|e)] ≤ Ep[ĝτ (Dτ (p|e)|e)].

Since ĝ is concave, applying Jensen’s inequality yields:
Ep[ĝτ (Dτ (p|e)|e)] ≤ ĝτ

(
Ep[Dτ (p|e)]

∣∣e) = ĝτ (q̄|e)
Now it suffices to show that the upper bound ĝτ (q̄|e) is attain-
able.

If ĝτ (q̄|e) = gτ (q̄|e), the right-hand-side can be achieved
by letting pτ (e) be the deterministic price D−1

τ (q̄|e).
Otherwise, let I = (q′, q′′) be the ironed interval (where

ĝτ (q|e) > gτ (q|e),∀q ∈ I but ĝτ (q′|e) = gτ (q′|e) and
ĝτ (q′′|e) = gτ (q′′|e)) containing q̄. Thus q̄ can be writ-
ten as a convex combination of the end points q′ and q′′:
q̄ = λq′ + (1 − λ)q′′. Note that the function ĝτ is linear
within the interval I . Therefore
λgτ (q′|e) + (1− λ)gτ (q′′|e) = λĝτ (q′|e) + (1− λ)ĝτ (q′′|e)

= ĝτ (λq′ + (1− λ)q′′|e) = ĝτ (q̄|e).
In other words, the upper bound ĝτ (q̄|e) could be achieved

by setting the price to be q′ with probability λ and q′′ with
probability 1 − λ. In the meanwhile, the flow qτ (e) would
retain the same.

Proof of Theorem 3.1. The theorem is implied by Lemma 3.2
and Lemma 3.4. In particular, the reward function is the
ironed objective function ĝ.

In the rest, we will focus on the equivalent problem:
maximize

∑
e,τ ĝτ (qτ (e)|e)

subject to (2.1) and (3.1).
(3.2)

4 Optimal Solution in Static Environment
We focus on the case where the environment is static, hence
the objective function is unchanging over time, i.e., ∀τ ∈
[T ], ĝτ (q|e) ≡ ĝ(q|e). Our goal is to find the optimal sta-
tionary policy that maximizes the objective function, i.e., the
decisions qτ depend only on the current state wτ .

In this section, we discretize the MDP problem and focus
on stable policies.



Definition 4.1. A stable dispatching scheme is a pair of state
and policy (wτ , π), such that if policy π is applied, the dis-
tribution of available drivers does not change over time, i.e.,
wτ+1(v) = wτ (v).

In particular, under a stable dispatching scheme, the state
transition rule (3.1) is equivalent to the following form:∑

e∈OUT(v) q(e) =
∑
e∈IN(v) q(e). (4.1)

Definition 4.2. LetM = (G,D, ĝ, S,A,W ) be the original
MDP problem. A discretized MDP DM with respect toM is
a tuple (Gd, Dd, ĝd, Sd, Ad,Wd), where Gd = G, Dd = D,
ĝd = ĝ, Wd = W , Sd is a finite subset of S, and Ad is a finite
subset of A that contains all feasible transition flows between
every two states in Sd.
Theorem 4.3. Let DM and M be a discretized MDP and
the corresponding original MDP. Let πd : Sd → Ad be an
optimal stationary policy of DM. Then there exists a stable
dispatching scheme (w, π), such that the time-average objec-
tive of π inM is no less than that of πd in DM.

Proof. Consider policy πd in DM. Starting from any state
in Sd with policy πd, let {wτ}∞0 be the subsequent state se-
quence. Since DM has finitely many states and policy πd
is a stationary policy, there must be an integer n, such that
wn = wm for some m < n and from timestep m on, the state
sequence becomes a periodic sequence. Define

w̄ = 1
n−m

∑n−1
k=m wk, q̄ = 1

n−m
∑n−1
k=m πd(wk)

Denote by πd(wk|e) or qd(e) the flow at edge e of the decision
πd(wk). Sum the transition equations for all the timesteps
m ≤ k < n, and we get:∑n−1

k=m wk+1(v)−
∑n−1
k=m wk(v)

=
∑n−1
k=m

(∑
IN(v) πd(wk|e)

)
−
∑n−1
k=m

(∑
OUT(v) πd(wk|e)

)
w̄(v) = w̄(v)−

(∑
OUT(v) q̄(e)

)
+
(∑

IN(v) q̄(e)
)

Policy πd is a valid policy, so ∀v ∈ V and ∀m ≤ k < n:∑
OUT(v) qk(e) ≤ wk(v)

Summing over k, we have
∑

OUT(v) q̄(e) ≤ w̄(v).
Now consider the original problemM. Let w = w̄ and π

be any stationary policy such that:
• π(w) = q̄;
• starting from any state w′ 6= w, policy π leads to state w

within finitely many steps.
Note that the second condition can be easily satisfied since
the graph G is strongly connected.

With the above definitions, we know that (w, π) is a stable
dispatching scheme. Now we compare the objectives of the
two policies πd and π. The time-average objective function
is not sensitive about the first finitely many immediate objec-
tives. And since the state sequences of both policies πd and π
are periodic, Their time-average objectives can be written as:

OBJ(πd) = 1
n−m

∑n−1
k=m

∑
e∈E ĝ(qd(e)|e)

OBJ(π) =
∑
e∈E ĝ(q̄(e)|e)

order driver user origin dest price timestamp
hash hash hash hash hash 37.5 01-15 00:35:11

Table 1: An example of a row in the dataset, where “hash” means
hash strings of exact values that we don’t show here.

By Jensen’s inequality, we have:

OBJ(πd) = 1
n−m

∑n−1
k=m

∑
e∈E ĝ(qd(e)|e)

≤
∑
e∈E ĝ

[(
1

n−m
∑n
k=m qd(e)

) ∣∣e]
=
∑
e∈E ĝ(q̄(e)|e) = OBJ(π)

With Theorem 4.3, we know there exists a stable dispatch-
ing scheme that dominates the optimal stationary policy of the
our discretized MDP. Thus we now only focus on stable dis-
patching schemes. The problem of finding an optimal stable
dispatching scheme can be formulated as a convex program
with linear constraints:

maximize
∑
e∈E ĝ(q|e)

subject to (2.1) and (4.1).
(4.2)

Because ĝ(q|e) is concave, the program is convex. Since all
convex programs can be solved in polynomial time, our algo-
rithm for finding optimal stationary policy of maximizing the
objective functions is efficient.

5 Empirical Analysis
We conduct experiments to demonstrate the performance
of our algorithms. Two benchmark policies, FIXED and
SURGE, are compared with our pricing policy. The analy-
sis results include demand-supply balance and instantaneous
revenue in both static and dynamic environments.

5.1 Dataset
We perform our empirical analysis based on a public dataset
from a major ride-sharing company.3 The dataset includes the
orders in a city for three consecutive weeks (Jan. 1st, 2016 ∼
Jan. 21st, 2016) and the total number of orders is more than
8.5 million. An order is created when a passenger sends a
ride request to the platform.

Each order consists of a unique order ID, a passenger ID, a
driver ID, an origin, a destination, an estimated price, and the
timestamp when the order is created (see Table 1 for exam-
ple). The driver ID might be empty if no driver was assigned
to pick up the passenger. For ease of presentation, we relabel
the region IDs in descending order of their popularities.

The travel time from nodes to nodes and demand curves
for edges are known in our model. By applying a standard
linear regression, the unit price per minute can be calculated
and then travel time can be inferred from the order price. For
the demand curves, we observe the values of each edge and
fit them to lognormal distributions. The data process is de-
scribed in the full version due to the lack of space.

3The dataset is provided by Didi for an algorithm competition.
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Figure 2: Instantaneous supply ratios for different regions.
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Figure 3: Instantaneous revenue in different environments.

5.2 Benchmarks
We consider two benchmark policies:
• FIXED: fixed per-minute pricing, i.e., the price of a ride

equals to the estimated travel time multiplied by a con-
stant per-minute price α.
• SURGE: the price of a ride equals to the estimated travel

time times αβ, with α the same as FIXED and β ≥ 1 as
a surge multiplier that depends on demand and supply .

We compare our dynamic pricing policy DYNAM with these
two benchmarks in both static and dynamic environments.

5.3 Performance
In the static environment, we use the average of the statistics
of all 21 days as the inputs to our model. We can instantiate
the convex program (4.2) and solve via standard gradient de-
scent algorithms. The length of each timestep is set to be 15
minutes and the number of steps in simulation is 96 (so 24
hours in total). For both FIXED and SURGE, we use the per-
minute price fitted from data as the base price, α = 0.5117,
and allow the surge ratio β to be in [1.0, 5.0]. Figure 3(a)
shows how the instantaneous revenues evolve as the time
goes by, where DYNAM on average outperforms FIXED and
SURGE by roughly 24% and 17%, respectively.

Our policy DYNAM is stationary under the static envi-
ronment, so the instantaneous revenue is constant (the red
horizontal line). The instantaneous revenue curves of both
FIXED and SURGE are decreasing and FIXED is decreas-
ing much faster. The observation reflects that both FIXED
and SURGE are not doing well in dispatching the vehicles:
FIXED simply never balances the supply and demand, while
SURGE shows better control in the balance of supply and de-
mand because the policy seeks to balance the demand with
local supply when supply can not meet the demand. How-
ever, neither of them really balance the global supply and de-
mand, so the instantaneous revenue decrease as the supply
and demand become more unbalanced.

In the dynamic environment, limited by computing re-
source, the parameters (i.e., the demand functions and the to-

tal number of requests) are estimated based on the statistics
of each hour but averaged over different days and we only
use the data from the weekdays (14 days in total)4 among the
most popular 5 regions (covering over 50% requests). We
instantiate the convex program (3.2) for the dynamic envi-
ronment and solve via the fmincon function. FIXED and
SURGE are set the same as the static environment.

Figure 3(b) shows the instantaneous revenue along the sim-
ulation. The relationship DYNAM � SURGE � FIXED holds
almost surely. Moreover, the advantages of DYNAM over the
other two policies are more significant at the high-demand
“peak times”. For example, at 8 a.m., DYNAM (∼800) outper-
forms SURGE (∼600) and FIXED (∼500) by roughly 33%
and 60%, respectively.

Demand-Supply Balance
Balancing the demand and supply is not the goal of our dis-
patching policy. However, such balancing abilities are impor-
tant for the real market. In Figure 2, we plot the supply ratios
(defined as the local instantaneous supply divided by the lo-
cal instantaneous demand) for all the 5 regions during the 24
hours of the simulation.

From the figures, we can easily check that comparing with
the other two lines, the red line (the supply ratio of DYNAM)
tightly surrounds the “balance” line of 1, which means that
the number of available drivers at any time and at each region
is close to the number of requests sent from that region at
that time. The lines of other two policies sometimes could
be very far from the “balance” line, that is, the drivers under
policy FIXED and SURGE are not in the location where many
passengers need the service.

As a result, our policy DYNAM shows much stronger power
in vehicle dispatching and balancing demand and supply in
dynamic ride-sharing systems. Such advanced techniques in
dispatching can in turn help the platform to gain higher rev-
enue through serving more passengers.
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