
Harnessing the Power of Deception
in Attack Graph-Based Security Games

Stephanie Milani1, Weiran Shen1, Kevin S. Chan2, Sridhar Venkatesan3,
Nandi O. Leslie2, Charles Kamhoua2, and Fei Fang1

1 Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213
smilani@andrew.cmu.edu,emersonswr@gmail.com,feif@cs.cmu.edu

2 Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA
{kevin.s.chan.civ,nandi.o.leslie.ctr,charles.a.kamhoua.civ}@mail.mil
3 Perspecta Labs Inc., 150 Mount Airy Road, Basking Ridge, NJ 07920, USA

svenkatesan@perspectalabs.com

Abstract. We study the use of deception in attack graph-based Stack-
elberg security games. In our setting, in addition to allocating defensive
resources to protect important targets from attackers, the defender can
strategically manipulate the attack graph through three main types of de-
ceptive actions. We show that finding the optimal deception and defense
strategy is at least NP-hard. We provide two techniques for efficiently
solving this problem: a mixed-integer linear program for layered directed
acyclic graphs (DAGs) and neural architecture search for general DAGs.
We empirically demonstrate that using deception on attack graphs gives
the defender a significant advantage, and the algorithms we develop scale
gracefully to medium-sized problems.

Keywords: Deception · Attack graph · Security game.

1 Introduction

Security is a serious worldwide issue, involving defending important infrastruc-
ture [62], protecting endangered wildlife species [14, 25], securing computer net-
works [30, 41, 60], and more. Most security scenarios involve a defender who allo-
cates limited security resources to protect targets from adversaries. To model and
tackle these challenges, researchers have proposed game-theoretic approaches—
especially those based on the Stackelberg security game (SSG) model. Many of
these techniques have been successfully deployed in the real world [8, 50, 58, 59].

Attack graphs [1, 18, 31, 45, 53] are a commonly-used, versatile modeling tool
for security challenges in different domains. They can model the abstract state
dependency and transition relations of any vulnerable system [7, 19, 35, 44, 46,
49, 65], including a city’s road system [33] and the topological structure of a
company’s computer network. Most existing work on attack graph-based SSGs
assumes the attack graph is given and unchangeable. Another widely-used se-
curity technique is defensive deception [5, 48, 66], where the defender can alter

2 S. Milani et al.

the appearance of targets or dynamically shift the attack surface. Commonly-
used defensive deception mechanisms include honeypots [2, 6, 9, 16, 27, 37] and
honeytokens [12] in cybersecurity, as well as camouflaging [63] and moving tar-
get defense [34]. Existing work on deception in security does not consider attack
graphs or ignores the defender’s ability to strategically allocate security resources
to mitigate attacks. Despite its significance, the use of deception alongside the
allocation of security resources on attack graph-based SSGs has not been studied.

To address this gap, we propose a variant of the SSG, an Attack Graph Decep-
tion Game, in which the defender can take deceptive and protective actions on
an attack graph. In our novel game model, the defender uses deception to mod-
ify the graph structure; a less capable attacker may observe the modified graph
structure during reconnaissance. The attacker then attacks targets by moving
between nodes on the graph, while the defender attempts to thwart the attacker
by protecting edges with her limited security resources. To model different at-
tackers’ skill levels, we consider the Bayesian setting, where the attacker has a
type representing his ability to perceive the true graph structure.

We focus on directed acyclic attack graphs (DAGs) and are particularly in-
terested in layered DAGs, which are commonly used to model networks [29,
38]. To solve layered DAGs, we propose a novel mixed-integer linear program
(MILP)-based algorithm that builds upon the standard LP-based algorithm for
solving Stackelberg games [17] and incorporates heuristic algorithms to signif-
icantly speed up computation. Our algorithm quickly finds the exact optimal
solution for a special class of layered DAGs: bipartite DAGs. For general DAGs,
we propose a neural architecture search (NAS)-based [23] algorithm, which uses
a genetic algorithm to search for the modified attack graph and neural network
optimization tools to find the remaining defense strategy. To our knowledge, this
is the first use of NAS in SSGs. We conduct extensive experiments showing the
scalability of our algorithms, and that using our algorithms and deception lead
to significant increases in the defender’s utility compared to baselines.

2 Game Model

An Attack Graph Deception Game is a two-player game on an attack graph.
The defender chooses her strategy first; the attacker selects his strategy after
surveillance. The attacker has a type θ ∈ Θ drawn from a prior probability dis-
tribution. The defender knows the distribution, not the exact type. This type
θ captures different skills and knowledge possessed by different attackers. For
example, in cybersecurity, an attacker with superior reconnaissance skills has
a greater chance of noticing honeypots and camouflage. In this section, we de-
scribe the attack graph, the players’ strategy space, the players’ payoff, and the
solution concept. The notation that we use to describe our model is summarized
in Table 1. We discuss the relaxation of some of our assumptions in Section 8.

Attack Graph. Attack graphs succinctly represent an attacker’s possible
attack paths. Of the many attack graph variants in the literature, we use a state-
based Bayesian attack graph [21, 39, 55] G = (N,E). The nodes N represent

Harnessing the Power of Deception in Attack Graph-Based Security Games 3

states in which attackers can be. The edges E represent actions that attackers can
take to transition between states. In the urban security, each node can represent
an intersection of a road network. In cybersecurity, a node can represent the
attacker’s intrusion status, including the compromised computers and accessed
databases. Following the common monotonicity assumption [7] that attackers
will not relinquish previously attained capabilities, we assume the graph is a
DAG. Furthermore, we assume that the players share knowledge of potential
attacker actions.

We assume that at most one edge connects two nodes. For an attacker type
θ and an edge e = (n, n′) ∈ E, qθ(e) is the intrinsic success probability for a
type-θ attacker to reach state n′ from state n through edge e. When an attacker
reaches n, he receives reward r(n) ≥ 0. Targets are the set of nodes T ⊂ S where
r(n) > 0. Entry points are the set of nodes with no incoming edges and r(n) = 0.
We create auxiliary nodes as entry points for problems without natural ones.

Layered DAGs are a special case of DAGs where nodes are partitioned into
l layers. Let nji be the j-th node in layer i and Li = {nji | ∀j} be the set of all
nodes in layer i. In a layered DAG, E only contains edges that connect nodes in
Li to nodes in Li+1,∀1 ≤ i ≤ l − 1. Bipartite DAGs are special layered DAGs
with l = 2. We are particularly interested in attack graphs that are layered
DAGs because they are well-suited to model networks [29, 38], and we can take
advantage of their structure to design efficient algorithms. For layered attack
DAGs, we assume all nodes except those in the first layer may be targets.

Defender Strategy. In our model, the defender’s action space consists of
two action types: deceptive and protective actions. Deceptive actions aim to make
attackers plan their attack with a misunderstanding of the game structure. Using
her deception budget Bd, the defender can take three classes of deceptive actions:
(i) hiding a real edge with a cost ch(e), (ii) adding a fake edge in a given set Ed
with a cost ca(e), and (iii) modifying the perceived reward of a non-entry-point
node with a cost cδ(n) per unit of change. We assume the deceptive actions only
change an attacker’s perception of the attack graph (called the induced attack
graph) and do not modify the true attack graph. Thus, a hidden edge is not
truly removed; it is simply hidden from some attackers. An added fake edge is
virtual : attackers cannot successfully move along that edge.

Each edge in the set Ed has perceived success probabilities qθ(e) for each
attacker type. These values are given as input. For the last action class, we as-
sume a type-θ attacker’s perceived reward of a node n is rθ(n) = r(n)+βθ∆(n),
where βθ is the probability of observing the associated (perceived) change to
the node reward ∆(n). The defender chooses the value of ∆(n) with a cost of
cδ(n)|∆(n)|. In cybersecurity, a defender can hide edges by masking connections
between physical machines or modifying the perceived routing table, add edges
by faking network traffic or vulnerabilities, and change perceived rewards by ma-
nipulating outgoing traffic [3, 4] to make machines look like something else (e.g.,
an unimportant relay device). In physical security, she can hide and add edges
by spreading misinformation about road closures or traffic [15], and change per-
ceived rewards by signaling to attackers — either by spreading misinformation

4 S. Milani et al.

Notation Definition

θ ∈ Θ Attacker type from the set of attacker types
G = (N,E) Attack graph, with set of a set of states N and set of edges E

e = (n, n′) ∈ E An edge in the set of edges

qθ(e) Probability of type-θ attacker reaching n′ from n using e.
r(n) Attacker reward for reaching n
T ⊂ N Set of targets where r(n) > 0

Bd Defender’s deception budget
Ba Defender’s effort budget

ch(e) Cost of hiding edge
ca(e) Cost of adding fake edge

cδ(n) Cost per change to node reward
Ed Set of fake edges that can be added
∆(n) Perceived change to node reward

rθ(n) = r(n) + βθ∆(n) Type-θ attacker’s perceived reward of n

βθ Probability of observing ∆(n)
x(e) Interruption probability
C Attacker’s penalty if interrupted by defender
sd Defender’s strategy
Ud Defender’s expected utility
BRΘ Best response(s) of the attacker type(s)

Table 1: Notation table.

or transforming targets to make them look like something else (e.g., through
“uglification” [32]).

To deploy protective measures, the defender allocates effort x(e) to edges
with an effort budget Ba, increasing the chance of interrupting an attack. This
effort can have different, domain-dependent meaning. x(e) may represent the
marginal probability of setting up a checkpoint on edge e [33] in urban security,
or the time spent monitoring edge e in cybersecurity. We assume the probability
that the defender will interrupt the attacker’s movement on e is proportional to
her allocated effort. Without loss of generality, we assume the coefficient to be 1.
Thus, the interruption probability is x(e). A defender’s strategy includes a set of
deceptive actions and a protective strategy x. We consider a deterministic decep-
tion strategy because the attacker observes the induced graph before choosing
his strategy, so randomized deception does not benefit the defender [52].

Attacker Strategy. After observing the graph induced by the defender’s
deception strategy and the defender’s protective strategy x, an attacker chooses
a pure strategy. Following the literature [51], this strategy is an an attack path on
his perceived attack graph. It is either null (the attacker chooses not to attack)
or consists of a sequence of nodes or edges on the graph, starting from an entry
point. To execute this strategy, the attacker starts from the entry point and
moves along the edges as planned until he fails or successfully reaches the last
node in the path. The attacker can fail to move along an edge for three reasons:
(i) he fails due to the intrinsic possibility of failure (with probability 1− qθ(e)),

Harnessing the Power of Deception in Attack Graph-Based Security Games 5

n1
1

n2
1

n3
1

n4
1

n1
2

n2
2

n3
2

n4
2

7

2

1

2

e2

e1

e3

e4

(a) Original graph.

n1
1

n2
1

n3
1

n4
1

n1
2

n2
2

n3
2

n4
2

7

2

1

2

e2

e1

e3

e4

(b) When e1 is protected.

n1
1

n2
1

n3
1

n4
1

n1
2

n2
2

n3
2

n4
2

7

2(1)

1

2

e2

e1

e3

e4

e5

(c) With deception.

Fig. 1: Influence of defender strategy on attackers’ best responses (blue for weak
attacker, red for powerful attacker) on a bipartite DAG. The dashed line rep-
resents an added edge; the dotted line represents a hidden edge. The numbers
next to a node show the true reward and the modified reward (parenthesized).

(ii) the defender interrupts his movement (with probability qθ(e)(1−x(e))), (iii)
the edge is fake (e ∈ Ed). The game ends when the attacker’s movement fails
or he reaches the last node along the planned path. We assume the attacker is
best responding based on his available information, including qθ(e) and rθ(n),
and chooses a path that maximizes his total expected utility.

Player’s Utility. When the attacker executes his attack strategy, he receives
reward (or penalty) at each step. His total utility is the accumulated undis-
counted reward (or penalty). Since the perceived reward and perceived success
probability governs the attacker’s response, we only discuss the attacker’s per-
ceived (expected) utility. If the attacker arrives at node n, he receives reward
rθ(n). If the defender interrupts the attack in one step of movement, the attacker
pays a penalty C in that step, and the game ends. If the defender interrupts an
attack before the attacker reaches any target, she gets 0. If the attacker success-
fully reaches a set of target nodes T ′ ⊂ T , the defender’s utility is −

∑
n∈T ′ r(n).

Solution Concept. We want to find the optimal defender strategy assum-
ing that attackers best respond based on their induced attack graphs: s∗d =
arg maxsd{Ud(sd, BR

Θ(sd)}, where sd is the defender’s strategy containing both
deceptive and protective actions, Ud is the defender’s expected utility, and BRΘ

denotes the best response(s) of the attacker type(s) with defender-favoring tie-
breaking. Our game model can be viewed as a two-stage problem: in stage one,
the defender takes deceptive actions and stage two is a Bayesian Stackelberg
game. We want to optimize the choice of deceptive actions in stage one and find
a Strong Bayesian Stackelberg equilibrium in stage two.

For expository purpose, we consider two extreme attacker types: attackers
who believe all and no deceptive actions, referred to as weak attackers W (w. p.
γ) and powerful attackers P (w. p. 1 − γ), respectively. A type-P attacker will
not be deceived, i.e., qP(e) = 0, ∀e ∈ Ed and βP = 0. Our theoretical results and
algorithms can be applied to the multiple attacker type setting.

Example Game Instance. To further elucidate our game model, we il-
lustrate an example game instance on a bipartite DAG (Fig. 1) and show how

6 S. Milani et al.

n1
1

e′

n1
2 e

n2
2

10

10

n1
3

n2
3

10

10

n2
4

10
0.9

ε

0.9

ε

0.9

1.0

1.0

Fig. 2: Non-submodularity example. The edge labels show the success probabili-
ties; the node labels show the rewards. ε is a sufficiently small positive number.
Adding either edge e or e′ will not affect the attacker’s choice of the lower path;
adding both will make the attacker choose the upper path.

the defender can use both deceptive and protective actions to improve her util-
ity. We set the costs and deception budget so that the defender can at most
take the following deceptive actions: adding edge e5 from n41 to n32, hiding
edge e4, and changing the weak attacker’s perceived reward of n22 from 2 to
1. We set the effort budget Ba to 1 and the success probabilities to satisfy
qθ(e2) < qθ(e4) < qθ(e3) < 1 and qθ(e) = 1 for other edges. Here γ = 0.5, i.e.,
the defender encounters the two attacker types with equal probability.

Fig. 1a shows the best responses of both attackers BRΘ on the graph with
no defender actions taken. The defender’s expected utility Ud is −7. Fig. 1b
shows BRΘ after the defender allocates all protective effort to e1. Here Ud =∑
θ −qθ(e3). Fig 1c shows BRΘ when the defender takes all possible deceptive

actions and protects e1. Here Ud = −qP(e3), as the weak attacker will fail due
to the fake edge. This example shows that deception can benefit the defender.

3 Theoretical Analysis

In this section, we show that the defender’s optimal utility as a function of
added or hidden edges is not submodular and the problem of finding the optimal
defender strategy is NP-hard.

Non-Submodularity Results. Let f(D), where D ⊂ Ed, denote the de-
fender’s optimal expected utility when she adds a set of fake edges D. f(D) is
submodular if ∀D ⊂ D′, e ∈ Ed \D′, f(D ∪ {e})− f(D) ≥ f(D′ ∪ {e})− f(D′).
Submodular functions enjoy desirable properties and often have efficient approx-
imation algorithms [26]. However, as shown by the example in Fig. 2, f(D) in
our game model is not submodular4.

In Fig. 2, the original graph contains all nodes and solid edges. Node n11 is
the entry point. We set Bd = 7, cδ(n) = ca(e) = 1,∀e, n, and ch(e) > 7,∀e,
so the defender cannot hide any edges. We set Ba = 0 and γ = 1. Let D = ∅
and D′ = {e′}. If the defender does not add an edge (the set of added edges
is D) or adds only one dashed line (D′ or D ∪ {e}), then no matter how she

4 For space, we omit the full proof for hiding edges. We follow a similar construction.

Harnessing the Power of Deception in Attack Graph-Based Security Games 7

changes the node rewards, the attacker’s best response is path (n11, n
2
2, n

2
3, n

2
4),

resulting in Ud = −24.39. If the defender adds both edges e′ and e, then she can
change the reward of n13 to 15 with the remaining budget 5. The attacker then
chooses path (n11, n

1
2, n

1
3) as he believes that it yields a higher utility (25) than

the lower path. Here Ud = 0, as the fake edges will cause the attacker to fail.
Thus, f(D ∪ {e}) − f(D) = 0 and f(D′ ∪ {e}) − f(D′) = 24.39, contradicting
the definition of submodularity. The non-submodularity indicates that it may
be hard to find efficient approximation algorithms for our problem.

Hardness Results. Our main result is that the problem is NP-hard when
the defender can perform both protective and deceptive actions, even when re-
stricted to layered DAGs.

Theorem 1. The problem of finding the optimal deceptive actions is NP-hard
even in layered DAGs.

Proof. We prove the theorem by providing a polynomial time reduction from
the knapsack problem (KP). In a typical KP, there are k items. Each item i
is associated with a weight wi and a value zi. We want to find a subset of the
items, such that

∑
i zi is maximized and

∑
i wi ≤ W , where W is given. Here

we only consider cases where wi ∈ Z,∀i, which are still NP-hard problems.

Given any KP instance with parameters w, z, W , we construct a problem
instance with a layered DAG as follows. First, create a source node n0 and
k other milestone nodes n1, n2, . . . , nk+1. Second, for each 1 ≤ i ≤ k, create
two sets of nodes {uji}

wi
j=1 and {lji }

W+1
j=1 , respectively called upper and lower

nodes. Third, for each upper node uji , add edges (ni−1, u
j
i) and (uji , ni). For each

lower node lji , add (ni−1, l
j
i) and (lji , ni). Fourth, add nodes {lj}W+1

j=1 and edges

(nk, l
j), (lj , nk+1), ∀j. Last, set r(uji) = zi for each upper node, r(nk+1) = M ,

where M is sufficiently large: M >
∑k
i=1 zi. For all other nodes n, set r(n) = 0.

Constructing this layered DAG with the above construction takes polynomial
time. We consider the case where γ = 1 and qW(e) = 1,∀e. We set Bd = W and
Ba = 0. Let ch(e) = 1,∀e, ca(e) > W,∀e, and cδ(n),∀n be sufficiently large,
such that the defender can only hide edges. Since there are more than W ways
go from one milestone node to the next, there is always a path from n0 to nk+1.
Because the attacker selects the highest-valued path, the attacker will choose to
go through an upper node to reach ni from ni−1, if able.

Let xi be the binary variable indicating if the attacker’s path from ni−1
to ni contains an upper node. The attacker’s utility is M +

∑k
i=1 zixi, so the

defender’s goal is to hide edges to minimize M +
∑k
i=1 zixi. If the defender

wants to prevent the attacker from reaching the upper nodes, she must hide
at least wi edges at a cost of wi. Let yi indicate whether the defender hides
these wi edges. Since xi = 1 − yi, we can rewrite the defender’s problem as an
integer program that minimizes M +

∑k
i=1 zi(1 − yi), subject to

∑k
i=1 wiyi ≤

W and yi ∈ {0, 1}, which is equivalent to maximizing
∑k
i=1 ziyi, subject to∑k

i=1 wiyi ≤W and yi ∈ {0, 1}. ut

8 S. Milani et al.

4 The MILP Approach for Layered DAGs

Here we provide an MILP-based algorithm for layered DAGs. We first describe
our approach for bipartite DAGs and then extend it to general layered DAGs.

4.1 Bipartite DAG

We describe our MILP-based approach for bipartite DAGs. We begin with the
following important observation.

Observation 1 In the defender’s optimal strategy, any edge added by the de-
fender must be in the optimal path chosen by the weak attackers.

Proof. Because the powerful attackers know that the edges are fake, only weak
attackers will choose them. The statement trivially follows; otherwise, adding
these edges would cause the attackers’ optimal path to stay the same, and the
defender would obtain the same expected utility. ut

Here any attacker’s action contains a single edge. According to Observation 1,
the defender will add at most one edge in her optimal strategy: that edge must
be the weak attacker’s best response. Thus, we have Ed = {(n1, n2) 6∈ E | n1 ∈
L1, n2 ∈ L2}. Denote by e0 the choice to not attack. Let eW ∈ E ∪Ed ∪{e0} and
eP ∈ E∪{e0} be the choices of the weak and powerful attacker, respectively. Let
xm(e) ∈ {0, 1} indicate if e ∈ E∪Ed is in the perceived graph. Denote by nend(e)
the endpoint of edge e. As with prior work [17], we must enumerate all possible
action profiles (eW, eP) and for each profile solve a mathematical program:

Maximize UW
d + UP

d

Subject to UW
d = −γ1[eW ∈ E]qW(eW)(1− x(eW))r(nend(eW)),

UP
d = −(1− γ)1[eP ∈ E]qP(eP)(1− x(eP))r(nend(eP)),

UW
a(e) = qW(e)[(1− x(e))rW(nend(e))− x(e)C],∀e ∈ E ∪ Ed,

UW
a(e0) = 0,

UW
a(eW) ≥ max{UW

a(e)− (1− xm(e))M, 0},∀e ∈ E ∪ Ed, (1)

UP
a(e) = qP(e)[(1− x(e))rP(nend(e))− x(e)C],∀e ∈ E,

UP
a(e0) = 0,

UP
a(eP) ≥ max{UP

a(e), 0},∀e ∈ E, (2)∑
e∈E∪Ed

xm(e)x(e) ≤ r, (3)

∑
n∈L2

cδ(n)|r(n)− rW(n)|+
∑
e∈E

ch(e) [1− xm(e)]

+ ca(eW)(1− 1[eW ∈ E]) ≤ Bd, (4)

0 ≤ x(e) ≤ 1,∀e ∈ E ∪ Ed,
xm(eW) = 1, if eW 6= e0,

Harnessing the Power of Deception in Attack Graph-Based Security Games 9

xm(e) = 0,∀e ∈ Ed \ {eW},
xm(e) ∈ {0, 1},∀e ∈ E,
l+k (n), l−k (n) ∈ {0, 1},∀n ∈ L2,

0 ≤ m+
k (e) ≤ l+k (nend(e)),∀e ∈ E ∪ Ed,

x(e)− [1− l+k (nend(e))] ≤ m+
k (e) ≤ x(e),∀e ∈ E ∪ Ed,

0 ≤ m−k (e) ≤ l−k (nend(e)),∀e ∈ E ∪ Ed,
x(e)− [1− l−k (nend(e))] ≤ m−k (e) ≤ x(e),∀e ∈ E ∪ Ed,

where UW
a and UP

a are the utilities of the weak and powerful attacker, UW
d and

UP
d are the defender’s utilities from the weak and powerful attacker, and M is a

sufficiently large positive number.
We safely remove xm(e) from constraint (3). To handle the absolute terms

in constraint (4), we introduce two variables for each target n ∈ L2: r+(n) =
max{rW(n)− r(n), 0} and r−(n) = max{r(n)− rW(n), 0}. Thus, we have: rW(n)−
r(n) = r+(n)−r−(n) and |rW(n)−r(n)| = r+(n)+r−(n). For the quadratic term
in constraints (1), we use similar techniques from previous work [57] to find ap-
proximate solutions. We first focus on solutions where rW(n)−r(n) is a multiple of
a basic step r0 and use binary representations for r+(n) and r−(n). We introduce
binary variables l+k (n) and l−k (n) and let r+(n) = r0

∑
k 2kl+k (n) and r−(n) =

r0
∑
k 2kl−k (n). We introduce two new variables m+

k (e) = x(e)l+k (nend(e)) and
m−k (e) = x(e)l−k (nend(e)) to replace all possible quadratic terms:

0 ≤ m+
k (e) ≤ l+k (nend(e)) and x(e)− [1− l+k (nend(e))] ≤ m+

k (e) ≤ x(e),

0 ≤ m−k (e) ≤ l−k (nend(e)) and x(e)− [1− l−k (nend(e))] ≤ m−k (e) ≤ x(e).

We improve the algorithm’s scalability in two ways. First, we track the best
solution U∗ so far and add a constraint to each MILP: UW

d + UP
d ≥ U∗. In addi-

tion to not affecting the final solution, this constraint speeds up the algorithm
by rendering many MILPs infeasible. We can efficiently decide a MILP’s feasi-
bility. Second, we build a two-layer search tree: the first layer corresponds to the
powerful attacker’s choice; the second layer corresponds to the weak attacker’s
choice. We compute each node’s upper and lower bounds and prune a branch
if its upper bound is less than the lower bound of other branches. To compute
the lower bound, we set Bd = 0, so the perceived graph of all attacker types is
the same as the true attack graph. Because all attacker types choose the same
attack, we view them as a single attacker.

We use two methods to compute the upper bound. In the first method, we
set Bd = ∞ in the original game, so the defender can hide all edges. The weak
attacker will not attack; thus, we need only consider the powerful attacker. In the
second method, we relax the original MILP to yield a tighter bound. We remove
the binary constraints, transforming the MILP into a linear program (LP). We
relax the LP by randomly adding a fraction of the constraints described in
Equations (1) and (2). Solving the new relaxed LP is much faster. Initially, we
compute both global lower (Bd = 0) and upper (Bd = ∞) bounds. For each

10 S. Milani et al.

leaf node, we compute a new upper bound using the second method described
above, and update the lower bounds and upper bounds for other related nodes.

4.2 Layered DAG

Now we consider general layered DAGs, where an attacker’s pure strategy is to
choose a state from each layer to form a path. The number of possible pure
strategies is

∏l
i=1 |Li|, which can be exponential in the number of states. Using

the multiple-LP method [17], we would need to solve exponentially many MILPs.
Instead, we provide a different formulation by simulating backward induction.

For simplicity, we describe our formulation for weak attackers; handling pow-
erful attackers is simpler. Let xm(e) indicate if e is in the weak attacker’s per-
ceived graph. For each node, we introduce variables V W(nji) and V P(nji), one for

each attacker type, to represent the expected utilities of starting from nji :

V W(nji) = rW(nji) + max
e:xm(e)=1,nstart(e)=n

j
i

qW(e)[(1− x(e))V W(nend(e)) + x(e)C],

where nstart(e) is the start state of edge e. To handle the quadratic terms, we
use their binary representations [57]. To handle the max operator, we introduce
a binary variable aW(e) indicating the attacker’s choice if he starts from nstart(e).
We guarantee that only existing edges are chosen and, among all edges start-
ing from the same state, at most one of them is selected: aW(e) ≤ xm(e) and∑
xm(e)=1,nstart(e)=n

j
i
aW(e) ≤ 1. With aW(e) = 1, the defender’s expected utility

UW
d(nji) from weak attackers starting from nji is:

UW
d(nstart(e)) = −r(nstart(e)) + qW(e)[(1− x(e))UW

d(nend(e)) + x(e)C].

We apply similar techniques to obtain the defender’s utility for powerful attack-
ers. The defender’s overall objective is γ

∑
j U

W
d(nj1)+(1−γ)

∑
j U

P
d(nj1). We omit

the complete MILPs for layered DAGs, as they can be obtained by modifying
the MILPs for bipartite graphs using the above steps.

5 The NAS Approach for General DAGs

In this section, we present our neural architecture search (NAS) algorithm for
general DAGs. We first describe how we find the attacker’s best response. The
rest of this section is devoted to solving the defender’s problem.

Given the defender’s strategy, let V θ(n) be a type θ attacker’s highest ex-
pected utility starting from node n, and Eθ be the set of edges in the perceived
graph for that attacker type. From the definition of best response, we have:

V θ(n) = max
n′:(n,n′)∈Eθ

{
rθ(n) + qθ(n, n′)[(1− x(n, n′))V θ(n′) + x(n, n′)C]

}
.

We can equivalently view V θ as a Bellman equation, so it can be solved with
dynamic programming or, because we focus on DAGs, backward induction on
the reversed topological order.

Harnessing the Power of Deception in Attack Graph-Based Security Games 11

n1

n2

n3

n4

n5

Ud

nW
1

nW
2

nW
3

nW
4

nW
5

nP
1

nP
2

nP
3

nP
4

nP
5

Fig. 3: The neural architecture search algorithm. The left figure is the DAG,
where the dashed line is the added edge. The right figure is the corresponding
neural network, where Ud is the defender’s total utility: the sum of utilities from
both types of attackers. The two dashed boxes correspond to the networks for
the weak (top) and powerful (bottom) attackers.

We now describe our NAS approach for solving the defender’s problem. We
leverage the insight that the defender’s actions can be divided into two cate-
gories: actions that change the attack graph structure (e.g., adding and hiding
edges) and actions that change the parameter values of the graph (e.g., changing
node values and protecting edges). Because the attack graph is a DAG, it natu-
rally can be viewed as a feedforward neural network (NN). Thus, we redefine the
problem as a NAS problem [23], in which we first use a search strategy to find
a NN structure, then use machine learning techniques to optimize the parame-
ter values. We use a genetic algorithm to propose architectures and a modified
gradient-based technique to optimize the parameter values and evaluate the qual-
ity of each architecture. We cast the defender’s utility as the objective function
in the optimization problem of training a NN. To optimize the parameter val-
ues, we use the forward pass to simulate the attacker’s decision-making process
(backward induction). Thus, we reverse the DAG and start from the end nodes.
We build a network for each attacker type based on their perceived graphs and
obtain the defender’s expected utility by aggregating the utilities obtained from
different attacker types.

However, we still need to address the following issues. First, the rational
attacker chooses a single, deterministic path from the set of possible paths. Thus,
small changes in a state’s value may not change the attacker’s decision, and, by
extension, the defender’s utility. Therefore, the gradients of the defender’s utility
with respect to these variables are 0. Second, the defender has budgets Bd and
Ba. To solve these problems, we borrow techniques from prior work [54]. For the
first problem, we slightly relax the assumption of rational attackers and use the
quantal response model [40]. Thus, the probability of choosing an edge (n, n′) is:

Prθ{n′|n} =

 eλV
θ(n,n′)∑

m:(n,m)∈Eθ eλV θ(n,m)
if (n, n′) ∈ Eθ;

0 otherwise,

where Eθ is the set of edges in the perceived graph for a type θ attacker, and λ is
a parameter that controls the rationality of the attackers. The term V θ(n, n′) is

12 S. Milani et al.

defined as the expected utility of a type θ attacker moving through edge (n, n′):
V θ(n, n′) = rθ(n) + qθ(n, n′)[(1− x(n, n′))V θ(n′)− x(n, n′)C], where

V θ(n) =

{
rθ(n) if n has no outgoing edges;∑
m:(n,m)∈Eθ Prθ{m|n}V θ(n,m) otherwise.

Thus, Uθd (n) =
∑
m:(n,m)∈E Prθ{m|n}Uθd (m) captures the defender’s utility from

a type θ attacker. Instead of a regularization term, which cannot guarantee
that the budget constraints are strictly satisfied, we use another method that
“distributes” the budgets to different nodes and edges. We introduce a variable
z(e) for each edge e ∈ E and two variables y(n) and d(n) for each target. Define:

x(e) = min

{
1.0,

Bdr ez(e)∑
e′∈E ez(e′)

}
and rW(n)− r(n) =

Baey(n)

cδ(n)
∑
n ey(n)

ed(n) − 1

ed(n) + 1
,

where Bdr is the remaining deceptive budget after adding and hiding edges. The
feasibility 0 ≤ x(e) ≤ 1 and budget constraints are always satisfied for all possible
combinations of z(e), y(n), and d(n). The quantities Prθ{n′|n}, x(e), and rW(n)
can be represented in all major deep learning packages using the sigmoid and
softmax functions.

6 Experiments

We conduct experiments on both bipartite and general DAGs. We generate the
graphs using the random Erdös-Renyi method [24]. To ensure the DAG property
for general graphs, each node has a unique number; only edges (s, t) s.t. s < t
can be added. Edge density ρ denotes the probability that an edge is added to
the original graph when constructed. We sample the edge success probabilities
and the attacker’s penalty C uniformly at random from the interval (0, 1] for
all experiments. We set Ba = 1. As hiding or adding an edge is more difficult
in reality than changing node rewards, we set the costs of deceptive actions
to ch(e) = ca(e) = 1,∀e and cδ(n) = 0.1,∀n (unless otherwise noted). We
generate the target rewards by sampling uniformly at random from the interval
[5, 10]. We generate 20 instances for each point in all plots. Because differential
evolution [61], a population-based evolutionary algorithm (EA), works well on
many problems, we use a modified DE/rand/1/bin variant [42] as a baseline (see
Appendix for details). The EA uses differential evolution from the scipy

package [64]. We use Gurobi [28] to solve the MILPs and PyTorch [47] for NAS.
We run all experiments on a machine with a Core i7 CPU at 4.2GHz.

With our experiments, we seek to answer the following questions: 1) What
is the effect of different deception budgets on the defender’s utility?, 2) What is
the solution quality obtained by our algorithms?, 3) How well do our algorithms
scale?, and 4) How do our algorithms allocate the deceptive budget?

Harnessing the Power of Deception in Attack Graph-Based Security Games 13

(a) Defender utility vs. number of nodes (b) Defender utility vs. edge density

Fig. 4: Change in defender’s utility versus graph size. The utility decreases as
the deceptive budget decreases and as the graph size increases.

6.1 Bipartite DAGs

Effect of Different Deception Budgets. We investigate how different decep-
tive budgets and graph sizes affect the defender’s utility Ud in a bipartite DAG
setting with the following experiments. In the first experiment, we fix the edge
density ρ to 0.5, vary the number of nodes N from 4 to 32 (from 2 to 16 on each
side), and solve each game with a different Bd. In the second experiment, we fix
N = 16, vary D in increments of 0.1, and solve each game with a different Bd.
We only use the MILP algorithm for both experiments.

Fig. 4 shows that Ud decreases as the graph size increases and as Bd decreases.
Fig. 4a depicts the first experiment’s results. When Bd = 1, the defender achieves
nearly the same Ud as Bd =∞. Because the cost of adding or hiding an edge is 1,
the defender can afford to manipulate the graph structure instead of only chang-
ing the perceived node rewards. This result shows that, in the bipartite DAG
case, adding one edge can typically yield the best solution. Fig. 4b depicts the
second experiment’s results. When Bd < 1, there is a small utility improvement
from an increased Bd; in contrast, Ud sharply increases when Bd = 1. When ρ
increases, the performance when Bd = 1 quickly decreases. When ρ is large, few
edges are available to add, so the effect of adding edges quickly diminishes.

Algorithm Performance. In our first experiment, we show the scalability of
our improved MILP algorithm (we omit NAS since it is not guaranteed to pro-
duce the optimal solution). In the second experiment, we compare the solution
quality of our MILP and NAS algorithms with the EA baseline. For the first ex-
periment, we vary N from 4 to 80 in increments of 4. For the second experiment,
we vary N from 10 to 60 in increments of 10. We set the maximum running time
for the EA and NAS to 5 minutes, as the MILP algorithm terminates within 5
minutes for all instances. We set the population size to 60 for the EA and NAS’s
genetic algorithm part. We set the EA’s recombination and mutation parameters
to the scipy package’s default values. For NAS, we set λ = 5 and use the Adam
optimizer [36] with a learning rate of 0.2. We fix ρ = 0.5 for both experiments.

14 S. Milani et al.

(a) Running time of MILP algorithm (b) Solution quality of all algorithms

Fig. 5: Scalability and performance on bipartite graphs

Fig. 5a depicts the results of the first experiment: our MILP algorithm scales
well. The average running time for solving an instance with 80 nodes is less
than 4 minutes; the longest individual running time is about 13 minutes. The
standard multiple-MILP [17] algorithm would need to solve about (40 × 40 ×
0.5)× (40×40) = 1, 280, 000 MILPs. With our heuristic algorithm, we only need
to solve 4.6 MILPs on average.

Fig 5b shows the results of the second experiment. To examine the effect
of the various algorithms on the defender’s utility Ud, we conduct a one-way
repeated measures ANOVA on all graph sizes. The results show that the al-
gorithm used leads to a statistically significant difference in Ud (F (3, 177) =
189.18, p = 5.66 × 10−55, α = .05). We conduct pairwise paired t-tests with
the Bonferroni correction to determine which algorithms result in significant
increases in Ud. We find that all algorithm pairs have a significant difference
in Ud. In fact, NAS (M = −3.0151, SD = 7.1396), the MILP algorithm with
no deception (M = −6.8458, SD = 1.7518), and the MILP algorithm with de-
ception (M = −2.2892, SD = 2.8603) significantly outperform the EA (M =
−7.1396, SD = 3.3582), p = 7.8× 10−20, .0012, 1.6× 10−24, respectively.

Budget Expenditure of the MILP Algorithm. We show how the MILP
allocates Bd. In this experiment, each graph has N = 16 and ρ = 0.5. For
each instance, we increase Bd from 0 to 2 and track how each budget is spent.
Fig. 6a shows the results. The defender never hides an edge in any of the optimal
solutions, suggesting that adding edges may be more useful than hiding edges.
This suggestion is further strengthened when Bd = 1: we see a sudden increase in
spending on adding edges. We also see that changing the node rewards may not
be as useful as other deceptive actions: the unused budget generally occupies a
large area. However, when Bd > 1, changing the node rewards is more frequently
used than when Bd ≤ 1. This result suggests that changing the node rewards is
more useful when combined with adding edges, as it makes the fake path appear
more valuable (and, thus, more attractive) to a weak attacker.

Harnessing the Power of Deception in Attack Graph-Based Security Games 15

(a) Spending on bipartite DAGs (b) Spending on general DAGs

Fig. 6: Deceptive budget expenditure of the MILP (left), and EA and NAS (right)

6.2 General DAGs

Algorithm Performance. We compare the performance of NAS and three
baselines on general DAGs. We omit the MILP algorithm: it is not applicable.
For the baselines, we use a random strategy (RAND), and a no-action strategy
(NA), and EA. We fix ρ = 0.5 and vary N from 10 to 50 in increments of 10.
We set Bd = 3 and sample ca(e) and ch(e) from the interval [0.5, 1.5], such that
ca(ei) = ca(ej),∀ei, ej and ch(ei) = ch(ej),∀ei, ej . EA and NAS use the same
parameters as before, but the maximum running time is 1.5×N minutes.

NAS leads to significantly higher defender utility Ud than all other algo-
rithms (Fig. 7a). We perform a one-way repeated measures ANOVA on all graph
sizes to examine different algorithms’ effect on Ud. We find that the choice
of algorithm produces statistically significant differences in Ud (F (3, 357) =
1286.9, p = 1.7 × 10−106, α = .05). We conduct pairwise paired t-tests with
the Bonferroni correction to determine which algorithms result in these signif-
icant increases. We find that all algorithm pairs have significant differences in
Ud. Importantly, NAS (M = −3.3453, SD = 6.3247) leads to a significant in-
crease in Ud compared to all algorithms: RAND (M = −10.067, SD = 12.369),
NA (M = −10.435, SD = 12.246), and the EA (M = −8.5974, SD = 15.220),
p = 6.77× 10−47, 7.83× 10−48, 6.56× 10−38, respectively.

We are interested in how quickly NAS reaches solutions with high Ud. Fig. 7b
shows how the NAS and EA solutions evolve. On average, NAS quickly (< 20
minutes) finds high-quality solutions and successfully refines the solution quality;
in contrast, the EA struggles to improve the utility from its initial solution.

Budget Expenditure of Different Algorithms. We show how the EA and
NAS allocate Bd. This experiment uses the same graphs as in Section 6.2. Fig. 6b
shows how the EA and NAS spend Bd. On average, NAS allocates more of Bd to
adding edges and changing the node rewards, indicating that the EA struggles
to find solutions that involve adding edges and to determine the appropriate
changes in the node rewards. We believe this is due to how the EA performs
recombination and mutation.

16 S. Milani et al.

(a) Average defender utility achieved
vs. the size of the graph

(b) Performance over time. The graph’s
number of nodes is parenthesized.

Fig. 7: Performance of different algorithms on general graphs

7 Related Work

In addition to the related literature mentioned throughout the paper, we intro-
duce and discuss some additional related works. Some SSG variants enable the
defender to manipulate the game’s payoff structure [13, 52, 57] or alter a system’s
observable features to influence the attacker’s attack choice [43, 56]). However,
these works do not capture the graphical structure of security problems. In
contrast, in our work, the defender manipulates the attacker’s perceived payoff
structure, allocates defensive resources, and manipulates the attacker’s perceived
graphical structure of the game (including the actions that the attacker believes
that he can take). Previous work that combines defensive deception and attack
graph games typically only focuses on deploying honeypots or fake vulnerabili-
ties in a network [10, 11, 19, 20, 22, 51]. Our model is more general in the sense
that it can model these deception techniques by allowing the defender to ma-
nipulate the edges and perceived reward of targets. In addition, we consider the
protective actions the defender may take to interrupt an attack. Another related
work [29] uses a model of defensive deception to manipulate the attacker’s belief;
however, it abstracts away specific deceptive actions, and does not account for
non-deterministic transitions between states, which are considered in our model.

8 Discussion and Conclusion

Our techniques can be applied to more general settings. For example, when the
attacker’s reward depends on the edge, not the node, we can replace the term
r(send(e)) with r(e) in the MILP and NAS algorithms. We can also easily relax
the assumption that the probability of catching an attacker at edge e is qθ(e)x(e).
Our MILP algorithm works if all constraints are linear in the defender’s protec-
tion effort; the NAS algorithm works for any differentiable function.

We introduced a novel variant of Stackelberg attack graph games, in which
the defender can alter the perceived structure of the attack graph and the per-

Harnessing the Power of Deception in Attack Graph-Based Security Games 17

ceived reward of the nodes in the graph, as well as allocate protective effort along
the graph’s edges. We proved the hardness of this problem and proposed two al-
gorithms to solve special but important subcases of this game: a MILP algorithm
with novel heuristics and a NAS algorithm in which the attack graph structure is
the neural network architecture. We performed extensive experiments that show
the effectiveness of deception and of our algorithms.

Acknowledgements. This research was sponsored by the U.S. Army Com-
bat Capabilities Development Command Army Research Laboratory and was
accomplished under Cooperative Agreement Number W911NF-13-2-0045 (ARL
Cyber Security CRA). The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the of-
ficial policies, either expressed or implied, of the Combat Capabilities Develop-
ment Command Army Research Laboratory or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on.

References

1. Abdallah, M., Naghizadeh, P., Hota, A.R., Cason, T., Bagchi, S., Sundaram, S.: Be-
havioral and game-theoretic security investments in interdependent systems mod-
eled by attack graphs. IEEE Trans. Control Netw. Syst. (2020)

2. Achleitner, S., La Porta, T., McDaniel, P., Sugrim, S., Krishnamurthy, S.V.,
Chadha, R.: Cyber deception: Virtual networks to defend insider reconnaissance.
In: Int. Workshop Managing Insider Secur. Threats (2016)

3. Albanese, M., Battista, E., Jajodia, S.: A deception based approach for defeating
os and service fingerprinting. In: Conf. Commun. and Netw. Secur. (2015)

4. Albanese, M., Battista, E., Jajodia, S.: Deceiving attackers by creating a virtual
attack surface. In: Cyber Deception (2016)

5. Almeshekah, M., Spafford, E.: Planning and integrating deception into computer
security defenses. In: New Secur. Paradigms Workshop (2014)

6. Almeshekah, M., Spafford, E.: Cyber security deception. In: Cyber Deception
(2016)

7. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulnera-
bility analysis. In: Conf. Comput. and Commun. Secur. (2002)

8. An, B., Ordóñez, F., Tambe, M., Shieh, E., Yang, R., Baldwin, C., et al.: A deployed
quantal response-based patrol planning system for the us coast guard. Interfaces
43(5) (2013)

9. Anwar, A.H., Kamhoua, C., Leslie, N.: A game-theoretic framework for dynamic
cyber deception in internet of battlefield things. In: Int. Conf. Mobile and Ubiqui-
tous Syst.: Comput., Netw. and Services (2019)

10. Anwar, A.H., Kamhoua, C., Leslie, N.: Honeypot allocation over attack graphs in
cyber deception games. In: Int. Conf. Comput., Netw. and Commun. (2020)

11. Basak, A., Kamhoua, C., Venkatesan, S., Gutierrez, M., Anwar, A.H., Kiekintveld,
C.: Identifying stealthy attackers in a game theoretic framework using deception.
In: Conf. Dec. and Game Theory for Secur. (2019)

12. Bercovitch, M., Renford, M., Hasson, L., Shabtai, A., Rokach, L., Elovici, Y.:
Honeygen: An automated honeytokens generator. In: IEEE ISI (2011)

18 S. Milani et al.

13. Blocki, J., Christin, N., Datta, A., Procaccia, A.D., Sinha, A.: Audit games. In:
Int. Joint Conf. Artif. Intell. (2013)

14. Bondi, E., Oh, H., Xu, H., Fang, F., Dilkina, B., Tambe, M.: Broken signals in
security games: Coordinating patrollers and sensors in the real world. In: Int. Conf.
Auton. Agents and Multi-Agent Syst. (2019)

15. Car and Driver: Artist shows google maps’ control over our lives by creating a fake
traffic jam (2020)

16. Cohen, F.: The use of deception techniques: Honeypots and decoys. Handbook Inf.
Secur. 3(1) (2006)

17. Conitzer, V., Sandholm, T.: Computing the optimal strategy to commit to. In:
Conf. Electron. Commerce (2006)

18. Dong, C., Zhao, L.: Sensor network security defense strategy based on attack graph
and improved binary pso. Saf. Sci. 117 (2019)

19. Durkota, K., Lisỳ, V., Bošanskỳ, B., Kiekintveld, C.: Approximate solutions for
attack graph games with imperfect information. In: Conf. Dec. Game Theory for
Secur. (2015)

20. Durkota, K., Lisỳ, V., Bošanskỳ, B., Kiekintveld, C.: Optimal network security
hardening using attack graph games. In: Int. Joint Conf. Artif. Intell. (2015)

21. Durkota, K., Lisỳ, V., Bošanskỳ, B., Kiekintveld, C., Pěchouček, M.: Hardening
networks against strategic attackers using attack graph games. Comput. & Secur.
87 (2019)

22. Durkota, K., Lisỳ, V., Kiekintveld, C., Bošanskỳ, B., Pěchouček, M.: Case studies
of network defense with attack graph games. Intell. Syst. 31(5) (2016)

23. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: A survey. J. Mach.
Learn. Res. 20 (2019)

24. Erdős, P., Rényi, A.: On random graphs. Publ. Mathematicae Debrecen 6 (1959)
25. Fang, F., Nguyen, T.H., Pickles, R., Lam, W.Y., Clements, G.R., An, B., et al.:

PAWS—a deployed game-theoretic application to combat poaching. AI Mag. 38(1)
(2017)

26. Feldman, M., Naor, J., Schwartz, R.: A unified continuous greedy algorithm for
submodular maximization. In: Annu. Symp. Found. Comput. Sci. (2011)

27. Garg, N., Grosu, D.: Deception in honeynets: A game-theoretic analysis. In: Inf.
Assurance and Secur. Workshop (2007)

28. Gurobi Optimization, LLC: Gurobi optimizer reference manual (2020)
29. Horák, K., Zhu, Q., Bošanskỳ, B.: Manipulating adversary’s belief: A dynamic

game approach to deception by design for proactive network security. In: Conf.
Dec. and Game Theory for Secur. (2017)

30. IBM Security: Cost of a data breach report 2019 (2019), https://ibm.co/2CPsVnV
31. Ingols, K., Lippmann, R., Piwowarski, K.: Practical attack graph generation for

network defense. In: Comput. Secur. Appl. Conf. (2006)
32. Instructables: How to make your bike look an ugly discouragement for thieves

(2015), https://rb.gy/kb384b
33. Jain, M., Korzhyk, D., Vaněk, O., Conitzer, V., Pěchouček, M., Tambe, M.: A dou-

ble oracle algorithm for zero-sum security games on graphs. In: Int. Conf. Auton.
Agents and Multi-Agent Syst. (2011)

34. Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C., Wang, X.S.: Moving target de-
fense: creating asymmetric uncertainty for cyber threats, vol. 54. Springer Sci. &
Bus. Media (2011)

35. Jajodia, S., Noel, S., O’berry, B.: Topological analysis of network attack vulnera-
bility. In: Managing Cyber Threats (2005)

Harnessing the Power of Deception in Attack Graph-Based Security Games 19

36. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

37. Kreibich, C., Crowcroft, J.: Honeycomb: Creating intrusion detection signatures
using honeypots. Comput. Commun. Rev. 34(1) (2004)

38. Kuipers, D., Fabro, M.: Control systems cyber security: Defense in depth strategies.
Tech. rep., Idaho Nat. Labo. (2006)

39. Liu, Y., Man, H.: Network vulnerability assessment using bayesian networks. In:
Data Mining, Intrusion Detection, Inf. Assurance, and Data Netw. Secur. (2005)

40. McKelvey, R.D., Palfrey, T.R.: Quantal response equilibria for normal form games.
Games and Econ. Behav. 10(1) (1995)

41. Mee, P., Schuermann, T.: How a cyber attack could cause the next financial crisis
(2018), https://bit.ly/3f2lOFP

42. Mezura-Montes, E., Velázquez-Reyes, J., Coello Coello, C.A.: A comparative study
of differential evolution variants for global optimization. In: Conf. Genetic and Evol.
Comput. (2006)

43. Miah, M.S., Gutierrez, M., Veliz, O., Thakoor, O., Kiekintveld, C.: Concealing
cyber-decoys using two-sided feature deception games. In: Int. Conf. Syst. Sci.
(2020)

44. Nguyen, T.H., Wright, M., Wellman, M.P., Baveja, S.: Multi-stage attack graph
security games: Heuristic strategies, with empirical game-theoretic analysis. Secur.
and Commun. Netw. (2018)

45. Noel, S., Jajodia, S.: Managing attack graph complexity through visual hierarchical
aggregation. In: Workshop Vis. and Data Mining for Comput. Secur. (2004)

46. Noel, S., Jajodia, S., O’Berry, B., Jacobs, M.: Efficient minimum-cost network
hardening via exploit dependency graphs. In: Comput. Secur. Appl. Conf. (2003)

47. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al.: Py-
torch: An imperative style, high-performance deep learning library. In: Adv. Neural
Inf. Process. Syst. (2019)

48. Pawlick, J., Colbert, E., Zhu, Q.: A game-theoretic taxonomy and survey of defen-
sive deception for cybersecurity and privacy. Comput. Surv. 52(4) (2019)

49. Phillips, C., Swiler, L.P.: A graph-based system for network-vulnerability analysis.
In: Workshop New Secur. Paradigms (1998)

50. Pita, J., Jain, M., Ordónez, F., Portway, C., Tambe, M., Western, C., et al.: Armor
security for Los Angeles International Airport. In: AAAI Conf. on AI (2008)

51. Polad, H., Puzis, R., Shapira, B.: Attack graph obfuscation. In: Int. Conf. Cyber
Secur., Cryptography, and Mach. Learn. (2017)

52. Schlenker, A., Thakoor, O., Xu, H., Tambe, M., Vayanos, P., Fang, F., et al.:
Deceiving cyber adversaries: A game theoretic approach. In: Int. Conf. Auton.
Agents and Multi-Agent Syst. (2018)

53. Schneier, B.: Attack trees. Dr. Dobb’s Journal 24(12) (1999)
54. Shen, W., Tang, P., Zuo, S.: Automated mechanism design via neural networks.

In: Int. Conf. Auton. Agents and Multi-Agent Syst. (2019)
55. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation

and analysis of attack graphs. In: IEEE Symp. Secur. and Privacy (2002)
56. Shi, Z.R., Procaccia, A.D., Chan, K.S., Venkatesan, S., Ben-Asher, N., Leslie,

N.O., et al.: Learning and planning in feature deception games. arXiv preprint
arXiv:1905.04833 (2019)

57. Shi, Z.R., Tang, Z., Tran-Thanh, L., Singh, R., Fang, F.: Designing the game to
play: Optimizing payoff structure in security games. In: Int. Joint Conf. Artif.
Intell. (2018)

20 S. Milani et al.

58. Shieh, E., An, B., Yang, R., Tambe, M., Baldwin, C., DiRenzo, J., et al.: Protect:
A deployed game theoretic system to protect the ports of the United States. In:
Int. Conf. Auton. Agents and Multi-Agent Syst. (2012)

59. Shieh, E., An, B., Yang, R., Tambe, M., Baldwin, C., DiRenzo, J., et al.: Protect
in the ports of Boston, New York and beyond: experiences in deploying Stackel-
berg security games with quantal response. In: Handbook Comput. Approaches to
Counterterrorism (2013)

60. Stallings, W., Brown, L., Bauer, M.D., Bhattacharjee, A.K.: Computer Security:
Principles and Practice (2012)

61. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4) (1997)

62. Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons
Learned. Cambridge Univ. Press (2011)

63. Thakoor, O., Tambe, M., Vayanos, P., Xu, H., Kiekintveld, C., Fang, F.: Cyber
camouflage games for strategic deception. In: Conf. Dec. and Game Theory for
Secur. (2019)

64. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Courna-
peau, D., et al.: Scipy 1.0: fundamental algorithms for scientific computing in
python. Nature Methods 17(3) (2020)

65. Wright, M., Wang, Y., Wellman, M.P.: Iterated deep reinforcement learning in
games: History-aware training for improved stability. In: ACM Conf. Econ. and
Comput. (2019)

66. Zhuang, J., Bier, V.M.: Reasons for secrecy and deception in homeland-security
resource allocation. Risk Anal.: An Int. Journal 30(12) (2010)

Appendix

We modify the DE [61] variant DE/rand/1/bin [42]. To initialize the population,
we randomly choose the sequence of deceptive actions to consider. For each type,
we determine the maximum number of components that can be altered (e.g.,
edges to add) for this individual. If allowed, we then modify the graph with
randomly-selected modifications of that type. We also add a new termination
condition based on the known optimal utility (0) for the defender if the defender
has infinite protective and deceptive budgets. If any solution yields this utility,
then we stop early and select it as the final solution. We also use a more compact
solution representation: the full solution takes space me(2|N |+ 1) + |N |+ 2|E|,
where me indicates the maximum number of edges that can be added to the
graph given Bd. Each edge to be added takes space 2|N |. To indicate that an
edge is to be added, we take the arg max over the effort allocated in the first N
and last N slots. The resulting indices i, j indicate the endpoints of the edge.
If the summed effort at i, j is greater than a threshold, the edge is added. We
further compact the representation when the defender cannot add or hide any
edges without violating constraints by removing these parts of the solution, so
each strategy uses space |E|+ |N |.

