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ABSTRACT
Coupon has been a major marketing tool that promotes sales for

new and repeated buyers and proven effective in numerous realistic

scenarios. In this paper, we mainly focus on the problem of design-

ing coupons to maximize the revenue in second-price auction.

Firstly, we derive the dominant strategies of bidders if they are

provided with coupons in second-price auction and prove that the

revenue optimization problem with coupons for all the bidders is

NP-complete. Secondly, we cast the problem of designing coupons

tomaximize revenue into a learning framework.Withwell-designed

loss functions, we perform theoretical analysis of its properties and

propose corresponding algorithms to solve the problem. Finally,

with both synthetic data and industrial data, extensive experiments

are conducted to demonstrate their effectiveness.
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1 INTRODUCTION
Advertising has become a dominant source of revenue for Inter-

net companies such as Google, eBay and Baidu. The ads are usu-

ally sold through auctions, where advertisers bid and compete

with one another for ad slots. In practice, both the VCG (Vick-

rey–Clarke–Groves) [10, 15, 38] mechanism and the GSP (gener-

alized second-price) [12] mechanism are widely used. In fact, as

argued by Akbarpour and Li [1], most real-world auctions are vari-

ants on just a few canonical formats: the first-price auction, the

ascending auction, and (more recently) the second-price auction.

The popularity of second-price auction relies on the fact that it is

incentive compatible, i.e., bidders bid exactly what they are willing

to pay. Revenue maximization in second-price-based auctions has

been intensively studies recently[17, 23, 30]. However, in this paper,
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we study this problem from a different dimension by designing

coupon policies.

Coupons have been a major marketing tool that promotes sales

for new and repeated buyers and proven effective in numerous

realistic scenarios [5, 24, 31]. It works by offering a financial dis-

count off the regular price when purchasing a product. Coupon

can be viewed as a price discrimination device actually [7, 39]. By

offering a coupon, the seller can attract some buyer who are other-

wise more inclined to buy a competing brand. By setting different

prices for customers of his own and that of a competing brand,

the seller can increase his own market share, i.e., lose small to win

big. Similarly, the intuition behind using coupon in second-price

auctions is to incentives low-values advertisers to overbid. Thus,

by pricing high-valued advertisers and low-valued ones differently,

the platform can increase his revenue. As far as we know, this work

is the first to study revenue maximization in second-price auctions

using coupons.

There are many devices to maximize revenue. For example, by

setting reserve prices [17]. A reserve price is the minimum amount

that an advertiser has to pay if he wins. It works by excluding

some conditions where a high-valued advertiser pays a low price;

Another well-known method is squashing [20]. In actual auctions,

advertiser i’s bid would be adjusted by a “quality score” wi (e.g.,

Click-through rate or CTR). Squashing mechanisms set a parameter

α which transformswi intow
α
i ; Recently, the boost mechanism is

also proposed by Golrezaei et al. [14]. A boost is a transformation

from original bids to boosted bids. With a slight modification on

payments, it ensures that no advertisers would pay more than their

original bids. It works by boosting low-valued advertisers so the

winner has to pay more.

However, coupon mechanisms are quite different from these

methods. It can be regarded as a decentralized revenue improvement

tool and hand the right to use coupons over to advertisers. While

for the other methods, they can be regarded as centralized tools

since the platform can decide whether to use them. The former is

more advertiser-friendly. Some recent works also consider auctions

from the angle of the advertisers, e.g., [1] studies credible auction

where the auctioneer has the incentive to follow the rules and does

not want to cheat on advertisers.

Although finding revenue optimal auctions in theory has been

widely studied [25, 29], we propose a learning approach to handle

the problem of determining coupons to optimize revenue for practi-

cal reasons. On the one hand, current theoretic results usually rely



on knowing each advertisers’ value distribution while even good

approximations of such distributions are not known in practice; On

the other hand, learning methods usually generalize well to new

advertisers.

Our contributions can be summarized as follows:

• We model the problem of designing coupons in second-price

auctions and cast the problem into a learning framework;

• We derive the dominant strategy for each bidder and study the

properties of optimal coupons;

• In the no-feature case, we specify the loss function and propose a

heuristic algorithm successively optimize the coupon of selected

bidder while fixing other coupons;

• In the general case, we design a surrogate loss function for opti-

mizing the coupons. When the predictor is linear, we propose an

algorithm that combines the DC programming and the heuristic

algorithm to train the predictor;

• Using both synthetic data and industrial data, extensive exper-

iments are conducted to demonstrate the effectiveness of our

algorithms.

1.1 Additional related works
There is rich literature on revenue maximization in advertising

system [22, 25, 28, 36]. However, these results heavily depend on

the knowledge of the bidders’ valuation distributions and could be

very sensitive to estimation errors [29]. Simpler mechanisms have

been widely used in industry, such as second-price auctions and

the GSP auctions. To increase the revenue in these auctions, many

methods have been proposed, i.e., reserve pricing [17], squashing

[20], and boost [14] (see [19] for a comprehensive survey). How-

ever, reserve price has a strong negative effect on the number of

advertisements shown. Increasing the reserve price may make the

auction less attractive and fewer advertisers will bid which lead to

lower revenue [27]. The other methods make a transformation on

bids. When advertisers have to pay more (e.g., increase the revenue

of platform), they may doubt the platform is “cheating” and refuse

these transformation if they can.

Another closely related line of works include using machine

learning in mechanism design. Balcan et al. [4] formulates mech-

anism design problems as algorithm design problems; Golowich

et al. [13], Shen et al. [34] try to design revenue maximization auc-

tions via deep learning; Medina and Mohri [23] and Shen et al. [32]

provide learning methods for setting reserve prices in second-price

auctions. A special case of our analysis coincides with the no-feature

scenario considered by Cesa-Bianchi et al. [9], Derakhshan et al.

[11]. Besides, reinforcement learning is also used to build behav-

ior model from data and then applied in automated mechanism

design [8, 33, 35]. Many other works also belong to this category

[2, 6, 26].

2 PRELIMINARIES
Let N be the set of bidders with |N | = n. Each bidder i has a private
value vi , which is drawn from a publicly known distribution Fi ,
with the corresponding density function fi . For convenience, let
v = (v1,v2, . . . ,vn ) be the value profile, andv−i be the value profile
of all bidders except i . Besides, we use F = F1 × F2 × · · · × Fn to

represent the joint distribution of value profilev .

2.1 Second-price auction with coupons
We first describe how coupons work. Before collecting bids from

the bidders, the auctioneer announces to each bidder privately that

he can provide coupon ci ≥ 0 to the bidder. This coupon can get

ci off the original payment if bidder i wins. We can set ci = 0

if the auctioneer does not provide bidder i with any coupons. In

such situations, bidder i may change his original bidding strategy

and bid bi instead. Let b and b−i be the bid profile of all bidders

and all bidders except i , respectively. In response to these bids, the

auctioneer determines which bidder is the winner and how much

he needs to pay according to some allocation rule and payment

rule. Specifically, the allocation rule is a function a that maps the

bid profile b to an n-dimensional vector indicating the quantity of

items allocated to each bidder, i.e. a : Rn 7→ [0, 1]n . In addition,

the payment rule is a function p : Rn 7→ Rn that takes the bid

profileb as input and outputs ann-dimensional non-negative vector

specifying the payment for each bidder. For simplicity, we use

a(b) and a, p(b) and p interchangeably. In the vanilla second-price

auction, the allocation rule and the payment rule are:

a(b) ∈ arg max

ā

n∑
i=1

āibi , (1)

pi (b) = max

ā

∑
j,i

ājbj −
∑
j,i

ajbj , (2)

where āi is a binary variable which satisfies that āi ∈ {0, 1},∑n
i=1

āi ≤ 1. These equations indicate that the advertiser with

the highest bid wins and he pays the second highest bid. As for

the second-price auction with coupons, the allocation rule is still

Equation (1) while the payment rule becomes Equation (3) instead.

pci (b) = pi (b) − ciai (b) (3)

Therefore, the utility of bidder i is:

ui (b) = viai (b) − p
c
i (b) = (vi + ci )ai (b) − pi (b) (4)

Finally, note that the bidding strategy of bidder i depends on his

value and the coupon provided to him, i.e. bi = bi (vi ; ci ), the rev-
enue of the auctioneer is ultimately decided by the value profile

and the coupon, that is,

Rev(v ;c) =
n∑
i=1

pi (b) − ciai (b).

The intuition behind the coupon idea is that the bidder with the
second highest bid could place a higher bid when presented with a
coupon. In what follows, let (j) denote the order of bidders that

satisfies: if j < l , then [b(j) > b(l )] ∨ [(b(j) = b(l )) ∧ (c(j) ≤ c(l ))]
holds, i.e., (j) denotes the bidder with the j-th highest bid (if there

are more than one, then select the one with smallest coupon). Let [j]
denote the index of the bidder that satisfies: if j < l , thenv[j] > v[l ]
holds, i.e., [j] denotes the bidder with the j-th highest value.

2.2 Learning formulation
Our goal is to learn coupons to maximize the expected revenue.

To implement the second-price auction with coupons, we apply a

data-driven approach to optimize the coupon given history data.

Since the second-price auction is a truthful mechanism, we can

directly use these historical bids as bidders’ values. Let vti be the



value of bidder i in auction t , where vti is drawn from Fi . Besides,

in auction t , letvt
and vt

−i denote the value profile of all bidders

and the value profile of all bidders except bidder i . Furthermore,

we consider a generic feature space X with a label space B = Rn+
consisting of the value profilev . The corresponding feature vector

with value profilevt
in auction t is xt and (xt ,vt ) is drawn from

some known joint distribution on X × B. To formulate the coupon

design problem in a learning context, we optimize the coupons

in the training dataset to achieve good revenue performance on

separate testing data which is drawn from the same distribution as

the training data. Let cti represent the coupon for bidder i in auction

t , we consider the following two cases:

The no-feature case. In this case, there are no features associated

with the auction and the bidders. Thus the coupons provided to the

bidders in each auction remain the same, i.e. cti = ci ,∀t . In such

case, the objective is to calculate the coupons c = (c1, . . . , cn ) that
minimize the empirical loss:

LS (c) = −
1

T

T∑
t=1

Rev
(
vt

;c
)
, (5)

where the training data is S =
(
v1, . . . ,vT

)
.

The general case. In this case, the coupons provided to the bidders
in auction t depend on the feature vector xt . We use a hypothesis

function h : X 7→ Rn to set the coupon c = h(x), hence the

objective is to select a hypothesis function h out of some hypothesis

set H to minimize the corresponding empirical loss:

LS (h) = −
1

T

T∑
t=1

Rev
(
vt

;h(xt )
)
, (6)

where S =
(
(x1,v1), . . . , (xT ,vT )

)
is the training data.

It is clear that Equation (5) is in fact a special case of Equation (6)

since we can generate identical feature vectors xt over the course
ofT auctions. As a concrete example, the training data could consist

of value profiles, and features about the bidders like their budgets,

ad context, industry categories and so on. Then the coupon design

problem is equivalent to predicting a coupon for each bidder in

order to improve the revenue of the auctioneer.

3 THEORETICAL ANALYSIS
In this section, we analyze the problem from the perspective of the

mechanism design theory. We first analyze the dominant bidding

strategy for each bidder. Then, we give some simple but intuitive

properties of the coupon mechanism.

3.1 Dominant bidding strategies
In this section, we analyze the equilibrium of the game induced by

the coupon mechanism, and show that there is a dominant strategy

for each bidder. Here, a dominant strategy is a strategy that always

provides at least the same utility (i.e., Equation (4)) to the bidder,

no matter what the other bidders’ strategies are.

Theorem 3.1. In the second-price auction with coupons, the domi-
nant strategy of bidder i is to use the coupon ci and bid vi + ci .

Proof. Since ci ≥ 0, bidder i always gets a positive value off
his payment compared with not using the coupon. Thus using ci is
always better.

As for “bidding vi + ci ”, we prove it by contradiction. Let b be

the bid profile where bi = vi +ci and b̄ be another bid profile where

bi , ¯bi while bi′ = ¯bi′ for all i
′ , i . Suppose that ui (b) < ui (b̄),

then we have:

ui (b) = (vi + ci )ai (b) +
∑
j,i

aj (b)bj −max

ā

∑
j,i

ājbj

ui (b̄) = (vi + ci )ai (b̄) +
∑
j,i

aj (b̄)bj −max

ā

∑
j,i

ājbj

According to Equation (1), we have:

a(b) ∈ arg max

ā

(vi + ci )āi (b) +
∑
j,i

āj (b)bj

 .
Thus:

(vi + ci )ai (b) +
∑
j,i

aj (b)bj ≥ (vi + ci )ai (b̄) +
∑
j,i

aj (b̄)bj .

A Contradiction. □

3.2 Properties of the coupon mechanism
The properties stated by Proposition 3.2 make the coupon design

problem challenging.

Proposition 3.2. Given the value profilev , Rev(v ;c), as a func-
tion of coupons c , has the following properties:
• It is not continuous, and is neither convex nor concave;
• It has infinitely many optimal solutions.

Proof. Consider the example with two bidders. The value of

bidder 1 is 1 while the value of bidder 2 is 0. Then Rev(v ;c) is not
continuous and is neither convex nor concave.

Let c∗ be the optimal coupons of the above example. Then c∗ +y
is also optimal where y > 0 and c∗ +y = (c∗

1
+y, c∗

2
+y). Thus there

are infinite optimal solutions. □

However, it is actually without loss of generality to focus on the

case with at least one coupon being 0:

Proposition 3.3. For any value profile, there exists an optimal
coupon profile c∗ that satisfies ∃i, c∗i = 0.

4 THE NO-FEATURE CASE
In this section, we focus on the no-feature case. We first show that

finding the optimal coupons in this case is computationally hard.

Then, we propose a heuristic algorithm for solving the problem.

We also give some structural results in this setting.

4.1 Hardness results
Based on Theorem 3.1, the revenue of the auctioneer for a single

auction is:

Rev(v ;c) = v(2) + c(2) − c(1). (7)

Combining Equation (5) and (7) gives:

LS (c) = −
1

T

T∑
t=1

vt
(2)
+ ct
(2)
− ct
(1)
. (8)



Theorem 4.1. In the second-price auction with coupons, the coupon
optimization problem in the no-feature case is NP-complete.

Proof. The result follows from a reduction from the edge bipar-

tization problem, which is NP-complete [16]. The edge bipartization

problem is the problem of deleting as few edges as possible tomake a

graph bipartite. Given a graphG = (V , E), we build the following in-
stance of the coupon optimization problem based on the edge bipar-

tization problem: There aren bidders wheren−1 = |V | andT = 4|E |

auctions. LetH and L be constants such that L < H < 2 |E |
2 |E |−1

L. And

each edge e = (i, j) represents 4 auctions:

• In the first two auctions: vi = vj = L,vn = H . The values of

other bidders are all 0.

• In the third auction: vi = vn = H . The values of other bidders

are all 0.

• In the fourth auction: vj = vn = H . The values of other bidders

are all 0.

In this instance, coupons must belong to {0,H − L}. Before proving
that the solution of the coupon optimization problem is equivalent

to finding as few edges as possible to make G bipartite, we first

describe the structure of the solution of the coupon optimization

problem. Given an edge e = (i, j). If bidder i and bidder j are pro-
vided with the same coupon, then the revenue will be 2H + 2L; If
one of them has a coupon with value of H − L and the other has a

coupon with value of 0, then the revenue will be 3H + L > 2H + 2L.
Now, we provide different bidders with different coupons arbi-

trarily. Let SA be the set of bidders with coupon whose value is

H − L and SB be the rest. Assume that there is no edge within SA
and no edge within SB . That is, each edge connects a vertex in SA
and a vertex in SB . Thus,G is a bipartite graph whose partition has

the parts SA and SB . In that case, the total revenue is |E |(3H + L),
which is the maximum possible revenue. When there are k edges

within SA and SB , i.e., there are k edges do not connect SA and SB ,
which denotes that we have k edges (i, j) such that bidder i and
bidder j are provided with coupons with the same value. In that

case, the revenue is (|E | − k)(3H + L) + k(2H + 2L), so we prefer to

minimize k . In other words, the solution of the coupon optimization

problem is obtained by solving the edge bipartization problem. □

4.2 Heuristic algorithm
Since there exists no algorithm that can compute the optimal coupons

in polynomial time even in the no-feature case, we propose a

heuristic algorithm. In this algorithm, instead of optimizing all

the coupons simultaneously, we successively optimize one of the

coupons while fixing all other coupons. To be specific, we optimize

ci while fixing c−i in each iteration.

Algorithm 1 Coupon optimization in the no-feature case

1: Initialize c ← 0.
2: while not terminated do
3: for i ∈ N do
4: ci ← arg miny LS (y; c−i ) + λ(y − ci )

2
.

5: end for
6: Update ci simultaneously to ci −minj c j .
7: end while

Here the algorithm terminates if convergence is reached or after

some fixed number of iterations. The term λ(y − ci )
2
in line 4 is

used as a regularizer to guarantee that the coupon does not change

too much in each iteration. Besides, line 6 is used to ensure that the

minimum value of the coupons c is zero, which ultimately imposes

restriction on the divergence of coupons according to the third

property in Proposition 3.3.

In fact, Algorithm 1 can be extended to become a more general

solution framework:

• In line 3, we can select a subset of bidders to optimize.

• ci in line 4 can be updated according to other functions.

4.3 Solution for the no-feature case
Algorithm 1 updates the coupon for one bidder at a time. Thus

the original problem is reduced to the following one-dimensional

optimization problem that minimizes:

LS (y; c−i ) + λ(y − ci )
2. (9)

To begin with, we introduce some new notations. For a single

auction instance, let L(y;v, c−i ) = −Rev(v ; (y, c−i )). Similar to the

aforementioned notation, we use b−i , j = v−i , j + c−i , j to denote

the reported bid of bidder j and use (j) to indicate the order of

bidders except bidder i . Again this order ensures that if j < l , then
[b−i ,(j) > b−i ,(l )] ∨ [(b−i ,(j) = b−i ,(l )) ∧ (c−i ,(j) ≤ c−i ,(l ))] holds.
Therefore, L(y;v, c−i ) can be written as:

L(y;v, c−i ) =


−b−i ,(2) + c−i ,(1) y ≤ b−i ,(2) −vi

−vi − y + c−i ,(1) b−i ,(2) −vi < y < b−i ,(1) −vi

min

{
−v−i ,(1),−vi

}
y = b−i ,(1) −vi

−b−i ,(1) + y y > b−i ,(1) −vi
(10)

If b−i ,(1) > vi , then L(y;v, c−i ) achieves its minimum at y =
b−i ,(1) −vi . Otherwise, L(y;v, c−i ) achieves its minimum at y = 0.

We use (b−i ,(1) − vi )
+ = max{b−i ,(1) − vi , 0} to denote this point

in both cases. Furthermore, in terms of Equation (9), Lemma 4.2

indicates that the optimal coupon for bidder i lies in some finite set

with cardinality O(T ).

Lemma 4.2. The problem that minimizes Equation (9) admits a
solution y∗ that belongs to the following set

{0} ∪

{(
bt
−i ,(1) −v

t
i

)+}T
t=1

∪ Q,

where Q is the set of stationary points of the objective function, which
satisfies |Q| ≤ T + 1.

Proof. Equation (9) is piecewise continuous, thus the solution

of the objective function belongs to its discontinuity and stationary

points. It is worth noting that {0} ∪ {(bt
−i ,(1) −v

t
i )
+}Tt=1

consists of

all the discontinuity points. Besides, the derivative of the objective

function is piecewise linear and there are at mostT +1 pieces, hence

the objective function has at most T + 1 stationary points. □

Proposition 4.3. According to Lemma 4.2, we can complete Al-
gorithm 1 by computing the minimum of Equation (9), which can be
implemented by evaluating its objective function at O(T ) points and
returning the best one.



5 THE GENERAL CASE
In terms of coupon optimization for the no-feature case, the previ-

ous section proposes a solution framework based on heuristic algo-

rithm and specifies the corresponding loss function (Equation (10)).

This approach motivates us to optimize the coupon of one bidder at

a time in the general case as before. Note that the original feature

space represents the feature of all the bidders and the hypothesis

function maps this feature space to all the coupons, which is in-

consistent with the approach. Thus it is straightforward to divide

the original feature space into different parts, and each part is as-

sociated with related bidder, that is, the feature vector of bidder

i is xi . What’s more, we use a new hypothesis function hi to set

the coupon for bidder i as ci = hi (xi ). Since hi is identical for each
bidder, we actually learn the predictor that works for any advertiser
with any features (including new advertisers). Here we only use this

notation to specify the hypothesis function for bidder i , which can

make the subsequent content in this section more explicit.

5.1 The loss function
Different from the no-feature case, cti = hi (x

t
i ) varies in different

auctions in the general case. Hence the approach that directly evalu-

ates coupons from some candidate set does not work as well. In this

section, we analyze the loss function for the general case, which is

fundamental to coupon optimization.

−𝑣−𝑖,(1)

𝑏−𝑖,(2) − 𝑣𝑖 𝑏−𝑖,(1) − 𝑣𝑖

𝑐−𝑖,(1) − 𝑏−𝑖,(2)

−𝑣𝑖

𝑂 𝑦

𝐿

(a)

−𝑣𝑖

𝑂 𝑦

𝐿

𝑏−𝑖,(2) − 𝑣𝑖 𝑏−𝑖,(1) − 𝑣𝑖

𝑐−𝑖,(1) − 𝑏−𝑖,(2)

−𝑣−𝑖,(1)

(b)

Figure 1: The loss function for fixedv and c−i where vi < b−i ,(2). (a)
case where vi < v−i ,(1); (b) case where v−i ,(1) < vi .

As shown in Figure 1(a), for any fixed v and c−i that satisfy
vi < b−i ,(2) and vi < v−i ,(1), L(y;v, c−i ) is not differentiable at two
points, y = b−i ,(2) − vi and y = b−i ,(1) − vi , and is discontinuous

at y = b−i ,(1) − vi . Besides, it is neither convex nor concave, but

quasi-convex in fact. Similarly, the above properties still hold in the

case where vi > v−i ,(1). Although we can solve quasi-convex opti-

mization problems, a sum of quasi-convex functions (i.e.LS (y; c−i ))
does not maintain the quasi-convexity property and can have many

local minima. Thus we need to consider some surrogate loss func-

tion, which we refer to as Lγ (y;v, c−i ). The intuition behind Lγ is to
smooth the original discontinuous loss function (Equation (10)).Given
v and c−i , since the real loss function L(y;v, c−i ) has different shape
in different cases, we define Lγ (y;v, c−i ) case by case.

(1) When vi ≥ b−i ,(1), providing coupon for bidder i yields less
revenue. In this case, the loss function is unchanged.

Lγ (y;v, c−i ) = L(y;v, c−i ) = −b−i ,(1) + y

(2) When vi < b−i ,(1) and vi ≤ v−i ,(1), let di ,2 = b−i ,(2) −vi , di ,1 =
b−i ,(1) −vi and ei = v−i ,(1) −vi . We simply connect two points

𝑑𝑖,2 𝑑𝑖,1

𝑂 𝑦

𝐿𝛾

(1 + 𝛾)𝑑𝑖,1

𝑐−𝑖,(1) − 𝑏−𝑖,(2)

−𝑣−𝑖,(1)

(a)

𝑂 𝑦

𝐿𝛾

(1 − 𝛾)𝑑𝑖,1

−𝑣𝑖

𝑐−𝑖,(1) − 𝑏−𝑖,(2)

𝑑𝑖,2

(b)

Figure 2: The surrogate loss function for fixedv and c−i wherevi <
b−i ,(1). (a) case where vi < v−i ,(1); (b) case where v−i ,(1) < vi .

on L(y;v, c−i ), i.e. (di ,1,−v−i ,(1)) and ((1+γ )di ,1,−b−i ,(1) + (1+
γ )di ,1), and define

Lγ (y;v, c−i ) =


−b−i ,(2) + c−i ,(1) y ≤ di ,2

−vi − y + c−i ,(1) di ,2 < y ≤ di ,1(
1 +

ei
γdi ,1

)
(y − di ,1) −v−i ,(1) di ,1 < y ≤ (1 + γ )di ,1

−b−i ,(1) + y y > (1 + γ )di ,1

Note that when vi ≥ b−i ,(2), the curve can be obtained by trans-

lation from Figure 2(a).

(3) As shown in Figure 2(b), when vi < b−i ,(1), vi > v−i ,(1) and
(1 −γ )di ,1 ≥ di ,2, we can connect ((1 −γ )di ,1, c−i ,(1) −vi − (1 −
γ )di ,1) and (di ,1,−vi ) on L(y;v, c−i ), and then define

Lγ (y;v, c−i ) =


−b−i ,(2) + c−i ,(1) y ≤ di ,2

−vi − y + c−i ,(1) di ,2 < y ≤ (1 − γ )di ,1(
−1 +

ei
γdi ,1

)
(y − di ,1) −vi (1 − γ )di ,1 < y ≤ di ,1

−b−i ,(1) + y y > di ,1

(4) When vi < b−i ,(1), vi > v−i ,(1) and (1 − γ )di ,1 < di ,2, the two
points become ((1 − γ )di ,1, c−i ,(1) − b−i ,(2)) and (di ,1,−vi ), and
the surrogate function can be defined as

Lγ (y;v, c−i ) =


−b−i ,(2) + c−i ,(1) y ≤ (1 − γ )di ,1
di ,2−c−i ,(1)

γdi ,1
(y − di ,1) −vi (1 − γ )di ,1 < y ≤ di ,1

−b−i ,(1) + y y > di ,1

Note that Lγ is a lower bound for L in all the cases. After defining
Lγ (y;v, c−i ), we can directly obtain the corresponding empirical

loss in the no-feature case, denoted by L
γ
S (y, c−i ). We use the fol-

lowing example to show the difference between Lγ and L.

(a) (b)

Figure 3: Difference between LS and LγS . (a) LS and LγS as the func-
tion of coupon y when γ = 0.09; (b) average difference between LS
and LγS as the function of γ .



Example 5.1. Suppose there are 5 bidders, and the value of bidder
i is drawn from a uniform distribution on [0, i]. Let c1 = 0.8, c3 =

0.4, c4 = 0.2, c5 = 0, we simulate T = 50 auctions and compute

the loss function as the function of the coupon for bidder 2. As

Figure 3(a) shows, L
γ
S is a lower bound for LS , and the difference

between two functions is relatively small. Besides, Figure 3(b) in-

dicates that we can approach the real loss function as we select a

sufficiently small γ .

In the general case, since we separate the feature space and

hypothesis set, the real empirical loss can be rewritten as

LS (hi ;h−i ) :=
1

T

T∑
t=1

L
(
hi (x

t
i );v

t ,h−i (x
t
−i )

)
,

for any hi ∈ Hi given h−i . Similarly, we can define L
γ
S (hi ;h−i )

as the empirical loss with respect to Lγ . We further analyze the

difference of the expectations of Lγ and L. We use

L(hi ;h−i ) := Ex ,v [L(hi (xi );v,h−i (x−i ))],

for anyhi ∈ Hi givenh−i , and analogouslywe can defineL
γ (hi ;h−i ).

It is obvious that Lγ (hi ;h−i ) is still a lower bound for L(hi ;h−i ).
Similar to the results by Medina and Mohri [23], we get:

Theorem 5.2. Given h−i , let Hi be a closed, convex subset of
a linear space of functions containing 0 and h

γ
i be the solution of

minhi ∈Hi L
γ (hi ;h−i ). Then if supv ,x−i |vi −max {v−i + h−i (x−i )}| =

Z < ∞, the difference between Lγ and L is bounded by:

L

(
h
γ
i ;h−i

)
− Lγ

(
h
γ
i ;h−i

)
≤ O(γ )Z

Proof sketch. We prove Theorem 5.2 case by case (with respect

to the definition of Lγ ). In each case, we partition the whole set

into different regions, and the loss function L and Lγ are affine in

each region. Then using the similar technique in [23], we prove the

corresponding inequality by segment amplification andminification

in each case. □

Denote by hi the solution of minhi ∈Hi L(hi ;h−i ), the following
inequality is straightforward:

0 ≤ L

(
h
γ
i ;h−i

)
− L

(
hi ;h−i

)
= L

(
h
γ
i ;h−i

)
− Lγ

(
h
γ
i ;h−i

)
+ Lγ

(
h
γ
i ;h−i

)
− L

(
hi ;h−i

)
≤ O(γ )Z + Lγ

(
hi ,h−i

)
− L

(
hi ,h−i

)
≤ O(γ )Z ,

where the last inequality holds because Lγ is a lower bound for

L. This inequality means if we choose a sufficiently small γ , then
we can obtain a solution that is near optimal for L(hi ;h−i ) by
minimizing the loss function Lγ (hi ,h−i ).

5.2 The DC algorithm
As mentioned in [23], suppose the separate hypothesis set Hi
consists of linear functions with bounded norm, i.e. xi 7→ ωi ·

xi , ∥ωi ∥ ≤ Λ. Then for a fixed γ > 0, we expect to solve the follow-

ing optimization problem:

min

∥ωi ∥≤Λ

T∑
t=1

Lγ
(
ωi · x

t
i ;vt , ct−i

)
s.t. ωi · x

t
i ≥ 0, ∀t, (11)

whereωi ·xti = hi (x
t
i ) and c

t
−i = h−i (x

t
−i ). Constraintsωi ·xti ≥ 0

are used to ensure that coupons are non-negative. Although each

term in the summay be not convex, Problem (11) can be formulated

as a DC programming problem. DC programming problems denote

the set of programming problems which can be represented as a

difference of two convex functions. It is a widely used technique in

the learning literature. Many theoretical results, applications, and

algorithms for this interesting and important class of programming

problems have been studied [3, 18, 21, 37]. The only thing we need

to do is to decompose Lγ (y;v, c−i ) as the difference of two convex

functions, i.e. д1(y;v, c−i ) − д2(y;v, c−i ). Here we omit the super-

script t for simplicity. Since Lγ varies in different cases, we derive

two convex functions д1 and д2 case by case.

(1) Whenvi ≥ b−i ,(1), it is easy to derive д1(y;v, c−i ) = −b−i ,(1) +y
and д2(y;v, c−i ) = 0.

(2) When vi < b−i ,(1) and vi ≤ v−i ,(1), we can define

д1(y;v, c−i ) =

{
−vi − y + c−i ,(1) y ≤ di ,1(
1 +

ei
γdi ,1

)
(y − di ,1) −v−i ,(1) y > di ,1

д2(y;v, c−i ) =


−vi − y + b−i ,(2) y ≤ di ,2

0 di ,2 < y ≤ (1 + γ )di ,1
ei

γdi ,1

(
y − (1 + γ )di ,1

)
y > (1 + γ )di ,1

(3) When vi < b−i ,(1), vi > v−i ,(1) and (1 − γ )di ,1 ≥ di ,2, д1 and д2

are defined as

д1(y;v, c−i ) =

{(
−1 +

ei
γdi ,1

) (
y − di ,1

)
−vi y ≤ di ,1

−b−i ,(1) + y y > di ,1

д2 (y;v, c−i ) =


д1(y;v, c−i ) + b−i ,(2) − c−i ,(1) y ≤ di ,2
ei

γdi ,1

(
y − (1 − γ )di ,1

)
di ,2 < y ≤ (1 − γ )di ,1

0 y > (1 − γ )di ,1

Since д2 is continuous, we can verify the convexity of д2 by cal-

culating the derivatives. It is straightforward that the derivative

is −1 +
ei

γdi ,1
in (−∞,di ,2),

ei
γdi ,1

in (di ,2, (1 − γ )di ,1), and 0 in

((1 − γ )di ,1,+∞), which is monotonically increasing. Hence the

convexity property holds.

(4) When vi < b−i ,(1), vi > v−i ,(1) and (1 − γ )di ,1 < di ,2, similar to

case (3), we have

д1(y;v, c−i ) =

{ di ,2−c−i ,(1)
γdi ,1

(y − di ,1) −vi y ≤ di ,1

−b−i ,(1) + y y > di ,1

д2(y;v, c−i ) =

{
д1(y;v, c−i ) + b−i ,(2) − c−i ,(1) y ≤ (1 − γ )di ,1

0 y > (1 − γ )di ,1

Besides, in order to extend the above definitions to T auctions, we

define four disjoint auction set as Equation (12) shows.

C1 =
{
t |vti ≥ bt

−i ,(1)

}
C2 =

{
t |vti < bt

−i ,(1),v
t
i ≤ v

t
−i ,(1)

}
C3 =

{
t |vti < bt

−i ,(1),v
t
i > v

t
−i ,(1), (1 − γ )d

t
i ,1 ≥ dti ,2

}
C4 =

{
t |vti < bt

−i ,(1),v
t
i > v

t
−i ,(1), (1 − γ )d

t
i ,1 < dti ,2

}
(12)



DefineG1 andG2 asG1(ωi ) =
∑
t д1(ωi · xti ;vt , ct

−i ) andG2(ωi ) =∑
t д2(ωi · xti ;vt , ct

−i ). Then the objective of Problem (11) can be

rewritten asG1(ωi )−G2(ωi ). Based on the approach adopted in [23],

we propose Algorithm 2 to solve this problem.

Algorithm 2 DC algorithm

1: Initializeω0

i .

2: for k = 1 to K do
3: ωk

i ← DCA(ωk−1

i ).

4: ωk
i ← TUNE(ωk

i ) whenωk
i , 0.

5: Break if ∥ωk
i −ω

k−1

i ∥ < ϵ .
6: end for

Here K is the maximum number of iterations and ϵ is used

as a threshold indicating convergence. What’s more, DCA(ωk−1

i )

and TUNE(ωk
i ) are used to updateωi . To be specific, DCA(ωk−1

i )

means to solve Problem (13), where δG2(ωk−1

i ) denotes an arbitrary

element of the sub-gradient ∂G2(ωk−1

i ). Thus DCA(ωk−1

i ) belongs

to quadratic-programming problems and can be tackled using any

standard QP solver.

min

∥ωi ∥≤Λ,s

T∑
t=1

st − δG2

(
ωk−1

i

)
·ωi

s.t.



ωi · xti ≥ 0, t = 1, 2, . . . ,T

st ≥ −b
t
−i ,(1) +ωi · xti , t ∈ C1 ∪C3 ∪C4

st ≥ −v
t
i −ωi · xti + c

t
−i ,(1), t ∈ C2

st ≥

(
1 +

e ti
γd ti ,1

) (
ωi · xti − d

t
i ,1

)
−vt
−i ,(1), t ∈ C2

st ≥

(
−1 +

e ti
γd ti ,1

) (
ωi · xti − d

t
i ,1

)
−vti , t ∈ C3

st ≥
d ti ,2−c

t
−i ,(1)

γd ti ,1

(
ωi · xti − d

t
i ,1

)
−vti , t ∈ C4

(13)

In Algorithm 2, DCA(ωk−1

i ) (line 3) is used to specify the direction

of ωk
i , we propose TUNE(ωk

i ) (line 4) to further determine the

norm ofωk
i , that is,

min

0≤η≤Λ

T∑
t=1

Lγ

(
η

ωk
i

∥ωk
i ∥
· xti ;vt , ct−i

)
. (14)

However, instead of directly solving Problem (14), which can be

done in polynomial time (O(T logT )), we merely evaluate a few

discrete values of η and select the best. In our empirical studies,

this approach still has good performance.

5.3 Heuristic algorithm for the general case
We have proposed Algorithm 2 to optimize the coupon of one bidder.

Now we solve the coupon design problem for the general case in

the solution framework defined in Section 4. Note that hi has the
same formula, i.e. hi = h,∀i , and we use ω = ωi to denote the

weight for each bidder. Our algorithm is presented as Algorithm 3.

Here the algorithm terminates whenω converges. Notice that

the modification of Algorithm 2 (line 6 in Algorithm 3) is reflected

in mainly two aspects.

Algorithm 3 Algorithm for the general case

1: Initializeω ← 0.
2: while not terminated do
3: Generate a random permutation of 1 to n as N̂ .

4: for i = N̂1 to N̂n do
5: Use ω to get the coupons for bidders except i , i.e. ctj =

ω · xtj , and make sure all the coupons are non-negative.

6: Run the modification of Algorithm 2 and use the output

to updateω.

7: end for
8: Fix the direction of ω, multiply it by different scales, and

calculate the corresponding revenue. Then select the scale

with the maximum revenue, denoted as η∗, and use η∗ω to

updateω.

9: end while

• Since there exists a regularizer λ(y − ci )
2
in line 4 of Algorithm1,

the objective of DCA(ωk−1

i ) can be modified with

min

∥ωi ∥≤Λ,s

T∑
t=1

st − δG2(ω
k−1

i ) ·ωi + λ∥ωi −ω
k−1

i ∥2,

which is still a quadratic-programming problems.

• TUNE(ωk
i ) in Algorithm 2 is not necessary. Instead, we fine

tune ω after successively optimizing ω for all the bidders, as

implemented in line 8 of Algorithm 3.

6 EXPERIMENT
In this section, we implement our algorithms for coupon design

in both no-feature case and general case and conduct extensive

experiments. We compare the performance of our algorithms with

existing ones in terms of revenue gain. Note that the work in this

paper is motivated mainly by algorithms in [23] and [14], we im-

plement these algorithms for comparison. First of all, we briefly

introduce these algorithms.

• In the second-price auction with anonymous reserve price, the

reserve price is the minimum amount that a bidder has to pay

if he wins the auction, and anonymity means that all bidders

share the same minimum amount. [23] designs the surrogate loss

function and proposes corresponding algorithms to select the

anonymous reserve price for both no-feature case and general

case. We use ARP-NA and ARP-GA to denote the algorithms for

the no-feature case and the general case, respectively.

• In the boosted second-price auction without reserve price, bidder

i is assigned with a boost βi , the slot is allocated to the bidder

with the highest boosted bid, i.e. i∗ ∈ arg maxi {biβi }, and he

pays maxi,i∗ {biβi }/βi∗ . Golrezaei et al. [14] proposes an itera-

tive algorithm, to successively optimize one of the boost values

while fixing all other boost values. We use BSP-AM to denote this

algorithm as [14] does. It is worth noting that BSP-AM works in

the no-feature case.

We then use both synthetic data and industrial data to verify the

properties of our algorithms and compare the performance with

that of the aforementioned algorithms. It is worth noting that γ
and λ are chosen to be 0.1 and 0.01 respectively.



6.1 Synthetic data
We choose two types of value distribution, one is the uniform

distribution, and another is the Pareto distribution with density

function p(x) = ama

xa+1
. There are 5 bidders in our experiments. For

the uniform distribution, each time we simulate 1000 auctions. To

implement this, we sample 1000 numbers from U (0, 1) for each
bidder, and then each bidder is assigned with a random scale size to

multiply these 1000 numbers as his values in 1000 auctions. Next

we use 700 auctions of these auctions as our training data, and

use the remaining as testing data. We implement ARP-NA, BSP-

AM and Alg.1 to fit the reserve price, boost values and coupons,

respectively on the training data, and calculate the corresponding

revenue on the testing data. We use Equation (15) to denote the

level of increment in revenue:

ρa =
Reva − Rev0

Rev0

(15)

where Reva represents the revenue achieved through algorithm

a (i.e., ARP-NA, BSP-AM or Alg.1) and Rev0 denotes the revenue

obtained without these methods in the second-price auction.

After repeating 50 times, we demonstrate the average level of

increment in revenue for each algorithm on both training data and

testing data for these two kinds of distributions. In Figure 4, for

both (a) and (b), the y-axis denotes the value of ρa .

(a) (b)

Figure 4: Revenue comparison for the synthetic data. (a) Uniform
distribution; (b) Pareto distribution.

As shown in Figure 4 (a), Alg.1 improves the revenue on testing

data by about 13.2%, while the compared algorithms improves the

revenue on testing data by about 2.6% and 11%; In Figure 4 (b), Alg.1

also outperforms the other two algorithms. It improves the revenue

on testing data by about 6.9%, while other algorithms improves

the revenue on testing data by about 5.6% and 3.8%. These results

demonstrate the effectiveness of Alg.1 in the no-feature case.

6.2 Industrial data
Data description. The industrial data we used comes from Tiktok.

This platform reaches 320 million DAU (daily active user) and 500

million MAU (monthly active users) in 2018. We randomly pick

29, 000 advertisers and extract 1, 000 auctions for each advertiser

from the log. Each advertiser instance contains 178 features, in-

cluding labels, industry category, pricing type (i.e., cost per click,

cost per mille or cost per action), budget and so on, where the

continuous variables are normalized and the category variables are

represented with one-hot encoding.

We randomly choose one advertiser and the corresponding 50

auctions. Figure 5 shows the relation between our surrogate loss

and the real loss for this advertiser based on these auctions . The

Figure 5: The relationship between the surrogate loss and the real
loss.

x-axis is the value of coupon provided while the y-axis is the value

of loss. Based on Figure 5, the surrogate loss is smoother and close

to the real loss. Together with previous theoretical analysis, the

experiment results show that the surrogate loss is effective.

Figure 6: Revenue comparison for the industrial data.

Figure 6 shows the results of the industrial data. The y-axis is the

value of ρa . APR-GA and Alg.3 are used for the general case while

the other algorithms are used for the no-feature case. APR-GA and

Alg.3 are significantly better than the other algorithms. In Figure 6,

APR-GA improves the revenue by about 1.2% and Alg.3 improves

the revenue by about 3.4%.While for the other algorithms, APR-NA,

BSP-AM and Alg.1 improves the revenue by about 0.40%, 0.57% and

0.45%, respectively. And the revenue improvement of Alg.3 is three

times that of the ARP-GA.

7 CONCLUSION
In this paper, we first analyze the properties of the optimal coupons;

Then, we consider the coupon design problem in two cases. In

the no-feature case, we provide hardness results and a heuristic

algorithm.In the general case, we provide a surrogate loss and prove

its effectiveness. A learning algorithm is also proposed based on the

DC programming; Finally, extensive experiments are conducted.

And our algorithms outperform previous algorithms significantly.
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