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Abstract. In this paper, we investigate the multiplayer General Lotto
game – a significant extension of the classic Colonel Blotto game – in
a setting involving competition across multiple battlefields. Under this
framework, resources are allocated probabilistically by players, ensur-
ing their expected expenditures remain within individual budgets. Our
contributions begin by establishing the existence of Nash equilibrium
for general scenarios, accommodating asymmetries in both player bud-
gets and battlefield valuations. A detailed characterization of equilibrium
strategies follows, specifically addressing the complexities arising when
multiple players compete on a single battlefield, and culminating in a
system of equations for computing equilibria. Furthermore, we identify
conditions under which equilibrium uniqueness is guaranteed in single-
battlefield game. Turning to multi-battlefield competition, our analysis
reveals an upper bound on the average number of battlefields actively
contested by each player. For symmetric scenarios, we provide explicit
equilibrium solutions. Finally, equilibrium multiplicity is demonstrated
concretely through an illustrative example involving multiple players and
battlefields.

Keywords: Colonel Blotto game · Nash Equilibrium · General Lotto
game.

1 Introduction

The Colonel Blotto game (CB game) is one of the simplest and most well-known
game-theoretic models for resource allocation. Initially proposed by Borel [5],
the CB game has been widely studied over the years [6]. In this game, two
competitors, A and B, are each given a fixed budget of resources to compete
over n battlefields. Each player assigns a specific value to each battlefield and
simultaneously allocates their resources across these n battlefields, ensuring that
the total allocation does not exceed their respective budgets. On each battlefield,
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the player with the highest allocation wins and receives the value assigned to
that battlefield, while the losing player receives no reward. Consequently, each
player’s utility is the sum of their gains from all n battlefields. The objective
for each player is to maximize their own utility by strategically choosing their
resource distribution.

In addition to the standard CB game, several variants have been proposed [3,
4]. One of the most well-known is the General Lotto (GL) game, where the bud-
get constraint is relaxed so that aggregate allocations do not exceed a player’s
budget only in expectation, rather than with certainty [13, 12, 19, 24, 8, 2, 27].
The GL game models scenarios in which multiple items are allocated through
repeated, independent all-pay auctions, and several budget-constrained bidders
compete for these items on a daily basis. For example, consider the case where
several machine learning competitions start online every day, each with a new
task. Multiple entities, such as academic research groups or companies, compete
for the first place in each competition. These entities may value each competi-
tion’s first place differently. Each entity has a fixed amount of computing power,
determining the total computation they can perform each day. For every compe-
tition, the entity that spends the most computation on its task wins. To increase
the probability of winning a competition, an entity must allocate more compu-
tation to it, at the cost of either (i) having less computation to spend on other
competitions, or (ii) performing poorly in competitions that start in the following
days (assuming each competition has a relatively long duration, allowing entities
to accumulate several days’ worth of computation for a single competition). In
fact, as demonstrated in the proof of Theorem 1, there exists a threshold amount
of computation beyond which no player finds it beneficial to accumulate more
for any single competition.

To our knowledge, in non-cooperative game environment, current research
on the GL game with asymmetric budgets has been limited to the two-player
case [13, 12, 19, 24, 29]. However, many real-world scenarios involve multiple par-
ticipants, such as market competition, international relations, social networks,
and ecosystems. These situations all involve strategic resource allocation and
competition, and a GL game framework with multiple players can more accu-
rately model interactions. Additionally, in applications such as auction design
and public policy making, designers aim to guide participants toward a specific
equilibrium by adjusting rules or mechanisms. Research on Nash equilibrium in
multiplayer settings can aid in identifying and designing effective mechanisms
for these purposes.

Investigating the existence, uniqueness, and structure of Nash equilibrium in
multiplayer settings is an important but highly challenging task. In the context
of two players, Roberson and Kovenock [19] completely characterized the Nash
equilibria in a general setting in which players have asymmetric budgets and the
battlefield values are also asymmetric between players. In this paper, we extend
their setting from two players to multiple players. However, analyzing the Nash
equilibrium in multiplayer settings introduces certain technical challenges. These
challenges mainly fall into the following three aspects:
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1. In the case of a single battlefield, Roberson and Kovenock [19] showed that
when the GL game involves only two players, there exists a closed-form
solution for the Nash equilibrium. When there are only two players, their
supports are identical in Nash equilibrium. However, when the number of
players in the GL game exceeds two, such a closed-form solution no longer
exists. We discover that the upper endpoints of the supports of players’
strategies coincide, and that the minimum value of a player’s support above
zero inversely correlates with his budget in Nash equilibrium.

2. In the case of multiple battlefields, Roberson and Kovenock [19] proved that
the GL game has a unique set of Nash equilibrium univariate marginals. They
used a parameter related to players’ budgets to partition the battlefields into
regions where each player has an advantage. However, in the multi-player,
multi-battlefield setting, the set of Nash equilibrium univariate marginals
is not unique. The multiplicity of Nash equilibria makes analyzing Nash
equilibria more challenging.

3. Regarding the existence of Nash equilibrium, Roberson and Kovenock [19]
employed a constructive proof approach. However, when multiple players
participate in the GL game, this constructive method becomes inapplicable
due to the complicated computation of Nash equilibrium. We use a “dis-
cretization + limiting” game framework, applying Kakutani’s fixed point
theorem and Helly’s selection theorem to prove the existence of Nash equi-
libria.

1.1 Our Contribution

In this work, we focus on the multiplayer GL game with asymmetric budgets
over multiple heterogeneous battlefields. Our key contributions are as follows:

– We establish the existence of a Nash equilibrium in the GL game. We start
with constructing a variant of the GL game where each player’s bid space
is discrete and bounded from above, and we demonstrate the existence of a
Nash equilibrium in this modified game. Subsequently, we show that if the
threshold is sufficiently large, it becomes non-restrictive. A Nash equilibrium
in the GL game arises from the limit of a sequence of Nash equilibria in the
modified games, where the bid grid in the sequence becomes finer and finer.
A more detailed discussion of the approach is given at the end of Section 3.

– For the game with a single battlefield, we provide a comprehensive charac-
terization of Nash equilibrium, revealing a relationship between the relative
order of players’ budgets and the support of their strategies. This charac-
terization also naturally implies the known result for the Nash equilibrium
in the case of two players with asymmetric budgets [19]. Additionally, we
provide a system of equations to solve for the Nash equilibria. Moreover, we
prove the uniqueness of Nash equilibrium when there are at least two players
with the maximum budget.

– For the game with multiple battlefields, we prove that for almost every value
profile, each player focuses only on few battlefields when the number of play-
ers is sufficiently large. We show that Nash equilibrium is not unique by
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providing an example. Additionally, in the symmetric setting with multiple
players and multiple battlefields, we present a solution for the Nash equilib-
rium.

To our knowledge, this is the first paper to study the multiplayer GL game with
asymmetric budgets. Our results significantly extend the existing literature on
the GL game.

Due to space limitations, some lemmas and most of the proofs are included
in the full version of the paper 4.

1.2 Related Work

The CB game was initially developed to simulate military logistics, where re-
sources are analogous to soldiers, equipment, or weapons. Owing to its ability to
model a variety of real-world scenarios, the CB game has aroused considerable
interest among scholars in fields such as sociology, mathematics, economics, and
computer science [28, 17, 15, 11, 23, 26, 18, 29, 20]. In the CB game, there may not
be pure strategy Nash equilibrium; however a mixed strategy Nash equilibrium
does exist, represented by a pair of n-variate distributions [26, 25, 22, 21]. Re-
search on the CB game primarily focuses on identifying and computing Nash
equilibria [26, 14, 1, 30]. However, the computation of Nash equilibrium in this
game is nontrivial, because the equilibrium strategies correspond to complicated
joint distributions defined on an n-dimensional simplex [26, 10, 16, 4, 14].

The GL game, as the most well-known variant of the CB game, has also been
extensively studied. Beale and Heselden [2] were the first to introduce the GL
game, proposing it as an auxiliary construct for deriving approximate solutions
to the Colonel Blotto game. Paarporn et al. [24] considered the GL game under
an information asymmetry setting, where one player’s budget was public knowl-
edge while the other player’s budget was drawn from a Bernoulli distribution.
Chandan et al. [8] studied the GL game with a concession, where the players’
concession strategies enables players to reach a more effective Nash equilibrium
in a competitive environment. Chandan et al. [9] investigated how, in the GL
game, openly declaring strategic intentions can influence an opponent’s strategy
choices, helping players to secure better outcomes in specific situations and gain
an advantage. In addition, Chandan et al. [7] explored the optimal strategies
for resource allocation in a multi-stage GL game. Their work indicated that by
dynamically adjusting investment strategies, players can significantly increase
their winning rates at different stages, thereby maximizing overall returns.

2 Preliminaries

In the multiplayer General Lotto (GL) game, a set of n players, indexed by [n] :=
{1, 2, · · · , n}, compete across m battlefields, indexed by [m] := {1, 2, · · · ,m}.
Each player i ∈ [n] is equipped with a fixed budget Bi > 0 and a valuation
4 The full paper is available at https://arxiv.org/abs/2401.14613.
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vi,j > 0 for each battlefield j ∈ [m]. A player’s pure strategy is to distribute
their budget, referred to as bids, across the battlefields. The outcome on each
battlefield is determined independently; the player who places the highest bid
on a battlefield wins that battlefield and gains the associated value. All other
players receive no reward for that battlefield. In cases where multiple players tie
for the highest bid, the winner is chosen uniformly at random.

Following the model introduced by Kovenock and Roberson [19], we con-
sider mixed strategies in which a player’s bid on each battlefield is modeled as
a nonnegative random variable. That is, instead of choosing fixed bids, player i
selects a tuple (Fi,j)j∈[m], where each Fi,j is a cumulative distribution function
(c.d.f.) from which their actual bid, denoted Xi,j , is drawn. The total expected
bid across all battlefields must respect the budget constraint. The set of feasible
strategies Fi includes all such m-tuples (Fi,j)j∈[m] that meet the following con-
ditions:
(i) the support of each Fi,j , denoted by Suppi,j , is contained in [0,+∞), ensur-
ing all bids are nonnegative, and
(ii) the total expected bid across all battlefields does not exceed player i’s bud-
get Bi.
We therefore represent the set of feasible strategies for player i as

Fi :=
{
(Fi,j)j∈[m] :

∑m

j=1
EXi,j∼Fi,j

[Xi,j ] ≤ Bi, Suppi,j ⊆ [0,+∞)
}
. (1)

We use Fi,j(x
+) and Fi,j(x

−) to denote the right-hand and left-hand limits of
the distribution function Fi,j at point x, respectively. Throughout the paper, the
notation −i refers to all players except player i. On each battlefield j, the bids
(Xi,j)i∈[n] are independently distributed. Specifically, suppose the realization
of the random variable Xi,j takes the value x ≥ 0, while the bids of all other
players on battlefield j, (Xi′,j)i′ ̸=i, are drawn independently from their respective
distributions F−i,j . Then, the probability that player i wins battlefield j is given
by

Pr[i wins j by bidding x] = E
X−i,j∼F−i,j

[
I[x ≥ Xi′,j , ∀i′ ̸= i]

#{i′ ̸= i : Xi′,j = x}+ 1

]
, (2)

where I[·] is the indicator function, equal to 1 if the predicate is true and 0
otherwise, and #{·} denotes the cardinality of a set, i.e., the number of elements
in the set.

Player i’s expected utility on battlefield j is given by their valuation vij
multiplied by the probability of winning that battlefield. Their total expected
utility is the sum of expected utilities across all battlefields. These are formally
defined as:

ui,j(x, F−i,j) = vij · E
X−i,j∼F−i,j

[ I[x ≥ maxi′∈[n] Xi′,j ]

#{i′ ̸= i : Xi′,j ≥ x}+ 1

]
.

Ui

(
(Fi,j)j∈[m], (F−i,j)j∈[m]

)
=

∑
j∈[m]

E
Xi,j∼Fi,j

[ui,j(Xi,j , F−i,j)] .
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Players are utility maximizers. Given the strategy profile of the other players
(F−i,j)j∈[m], player i’s best response is a strategy that maximizes their expected
utility:

(Fi,j)j∈[m] ∈ argmax
(F ′

i,j)j∈[m]∈Fi

Ui

(
(F ′

i,j)j∈[m], (F−i,j)j∈[m]

)
.

A strategy profile (Fi,j)i∈[n],j∈[m] is a Nash equilibrium if, for every player i,
their strategy is a best response to the strategies of all other players.

Throughout the paper, we focus on the mixed strategies of the players, i.e.,
Fi,j , ∀i ∈ [n], ∀j ∈ [m].

The following lemma provides a necessary condition for a strategy profile to
be a Nash equilibrium. Intuitively, on each battlefield, a player’s utility must be
bounded above by a linear function of their own bid. Moreover, the player assigns
positive probability only to those bids where this upper bound is tight. That is,
the utility equals the value of the linear function. Otherwise, the player could
deviate to a different bid that yields strictly higher utility without altering the
expected allocation to that battlefield. Additionally, for each player, the slopes
of these linear upper bounds must be the same across all battlefields. If they
differed, the player could improve their utility by shifting expected allocations
between battlefields.

Lemma 1. If (Fi,j)i∈[n],j∈[m] is a Nash equilibrium, then there exist constants
ai > 0 for every i ∈ [n] and bi,j ≥ 0 for every i ∈ [n], j ∈ [m] such that

Pr
Xi,j∼Fi,j

[ui,j(Xi,j , F−i,j) = aiXi,j + bi,j ] = 1,

and for all x ≥ 0, it holds that

ui,j(x, F−i,j) ≤ aix+ bi,j ,

for every i ∈ [n] and j ∈ [m].

We next establish a property of the constants bi,j that further simplifies the
analysis.

Lemma 2. For every battlefield j ∈ [m], at most one player can have bi,j > 0.
That is, #{i : bi,j > 0} ≤ 1.

This result will be particularly useful in our later analysis, especially when char-
acterizing Nash equilibria on a single battlefield.

3 Existence of Nash Equilibrium in the General Lotto
game

In this section we show that the GL game has a Nash equilibrium.

Theorem 1. A Nash equilibrium exists in the GL game.
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The proof of Theorem 1 relies on the following game Gk, which is a modifi-
cation of the GL game where only bounded bids on discrete grids are allowed,
and ties are broken uniformly at random.

For every k = 1, 2, . . ., consider the following game Gk:

– The finite set of feasible bids is given by Ak := { l
k · T | 0 ≤ l ≤ k, l ∈ Z},

where T = 22n+3 ·maxi∈[n] Bi.
– Every player i ∈ [n] chooses a strategy, which is given by m distribu-

tions Fi,·,k := (Fi,j,k)j∈[m] with every Fi,j,k ∈ ∆(Ak), so that player i’s
random bid on battlefield j is given by Xi,j ∼ Fi,j,k, satisfying constraint∑

j∈[m] E[Xi,j ] ≤ Bi. Note that the bids (Xi,j)i∈[n],j∈[m] are independently
distributed.

– Denote the strategies of all players other than i on battlefield j by F−i,j,k :=
(Fi′,j,k)i′ ̸=i, and the random bids of all players other than i on battlefield j
by X−i,j := (Xi′,j)i′ ̸=i. Denote the strategy profile by F·,·,k := (Fi,·,k)i∈[n],
and the strategies of players other than i by F−i,·,k.

– Denote the set of i’s feasible strategies by Fi,k, which is a compact subset of
(∆(Ak))

m. Denote the set of feasible strategy profiles by Fk := ×i∈[n]Fi,k.
– Break ties uniformly at random: For each i ∈ [n] and each F·,·,k ∈ Fk, the

utility of player i’s is given by the function Ui : Fk → R, defined as:

ui,j(x, F−i,j,k) = E
X−i,j∼F−i,j,k

[
vij · I[x ≥ maxi′∈[n] Xi′,j ]

#{i′ ̸= i : Xi′,j ≥ x}+ 1

]
.

Ui(F·,·,k) =
∑
j∈[m]

EXi,j∼Fi,j,k
[ui,j(Xi,j , F−i,j,k)] .

Throughout this section, given a positive integer k, we denote a Nash equilib-
rium of Gk by F̃·,·,k and represent a Nash equilibrium strategy of player i by
(F̃i,·,k)j∈[m].

Based on our constructed discrete game Gk, we adopt the following steps to
prove the existence of Nash equilibrium in the GL game:

– Show that Gk admits a Nash equilibrium.
– Show that no player bids in [T2 + T

k , T ] when k is sufficiently large.
– Show that F̃i,j,k converges when k → ∞.
– Show that F̃i,j,k is uniformly continuous in the interval [0, T ] when k → ∞.
– Show that the existence of a Nash equilibrium in Gk can be extended to the

original game GL.

One can apply Kakutani’s fixed point theorem to a proper set-valued function
β : Fk → 2Fk and conclude that a Nash equilibrium exists in Gk.

Lemma 3. For every k ≥ 1, Gk has a Nash equilibrium.

It should be noted that Nash’s theorem cannot be used to prove Lemma 3.
Under Nash’s theorem, each player’s feasible mixed strategy set is a simplex,
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with each vertex corresponding to a pure strategy, and every pure strategy for
a player must not exceed their budget. However, in our model, each player’s
strategy must satisfy the constraint that the expected total allocation does not
exceed their budget. This means that, on battlefield j, player i’s mixed strategy
may assign positive probability to bids that individually exceed their budget.

For any F̃·,·,k, Lemma 4 shows that the supports of the Nash equilibrium
strategies are uniformly bounded away from the upper threshold T . This means
that, as long as T is chosen sufficiently large relative to the players’ budgets,
the actual Nash equilibrium strategies are unaffected by the specific value of
T . The intuition is as follows: if a player bids a sufficiently high value, such as
3 ·maxi∈[n] Bi, then by Markov’s inequality and the expected budget constraints,
the probability that any other player’s bid exceeds this amount must be less
than 1

2 . Thus, a player who bids 3 · maxi∈[n] Bi can beat any single opponent
with probability greater than 1

2 , and wins against all opponents simultaneously
with probability greater than ( 12 )

n−1. However, such a high bid is very costly
in expectation and not optimal under the budget constraint. Therefore, in Nash
equilibrium, players will not put probability mass near the upper threshold, and
the strategies concentrate on much lower bids.

Lemma 4. Given T = 22n+3·maxi∈[n] Bi, there exists K > 0 s.t. for any k ≥ K,
no player bids in [T2 + T

k , T ] on any battlefield j in Nash equilibrium of Gk.

Next, we show that the sequence {Fi,j,k}k≥1 admits a subsequence that con-
verges to a limit distribution when k → ∞. Because every distribution func-
tion Fi,j,k is monotone and bounded in [0, 1], the family {Fi,j,k}k≥1 forms a
set of bounded monotone functions. Helly’s selection theorem guarantees that
for any fixed coordinate (i, j), one can extract a pointwise-convergent subse-
quence. Since the numbers of players n and battlefields m are finite, we iterate
over the coordinates (1, 1), (1, 2), . . . , (n,m): first take a convergent subsequence
for (1, 1); within that subsequence, extract another for (1, 2); and so on. Af-
ter finitely many steps we obtain an infinite subsequence {kℓ} with kℓ → ∞
along which Fi,j,kℓ

(x) converges for every x and for every (i, j). Thus, the limits
Fi,j(x) = limℓ→∞ Fi,j,kℓ

(x) define the desired limit distributions. Hence, using
Helly’s “coordinate-by-coordinate, nested subsequence” procedure and the fact
that the total number of coordinates is finite, we ensure that the full strategy
sequence converges simultaneously along a common subsequence.

In the remaining part of this section, we refine (F̃·,·,k)k≥1 to be the final
subsequence obtained after the above steps, in which every (F̃i,j,k)k≥1 converges
pointwise. Denote the final limit of the sequence as F̃·,· := (F̃i,j)i∈[n],j∈[m]. Note
that for F̃i,·,k to be a best response to F̃−i,·,k, it must satisfy the condition∑

j∈[m] EXi,j∼F̃i,j,k
[Xi,j ] = Bi, which in turn implies that

∑
j∈[m] EXi,j∼F̃i,j

[Xi,j ]
= Bi.

Note that although every c.d.f. F̃i,j,k is right-continuous, the limit F̃i,j does
not necessarily have continuity. By taking some sufficiently large k and analyzing
Nash equilibrium of Gk, we can establish some properties about the continuity of
F̃·,· in [0, T ) (See Lemmas 13 and 14 in Appendix B of the full version). Based on
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the continuity, we can derive Lemma 5, which establishes that the convergence
of (F̃·,·,k)k≥1 is uniform and furthermore ensures that the sequences ui,j also
converge.

Lemma 5. Given n ≥ 3, for every i ∈ [n], j ∈ [m], we have:
1. F̃i,j is uniformly continuous on [0, T ],
2. the sequence (F̃i,j,k)k≥1 uniformly converges to F̃i,j,
3. the sequence of univariate functions ui,j(·, F̃−i,j,k) will converge in || · ||∞ to

ui,j(·, F̃−i,j), where ui,j(·, F̃−i,j) is the utility function of original GL game
with continuous bid space. That is,

lim
k→∞

sup
x∈[0,T ]

|ui,j(x, F̃−i,j,k)− ui,j(x, F̃−i,j)| = 0.

Lemma 5 leads to the conclusion that F̃·,· is a Nash equilibrium in the game
where the players can choose random bids within interval [0, T ]. By Lemma 4,
we can know that no player bids in [ 3T4 , T ]. In fact, even if players are allowed
to bid more than T , in Nash equilibrium, no player will actually bid above T .
Thus, we can establish the existence of a Nash equilibrium in the GL game. Due
to space limitations, the proof of Theorem 1 can be found in Appendix B of the
full version.

Remark on the proof approach. In the General Lotto game, the existence of a
Nash equilibrium cannot be established directly by a fixed-point theorem. In
particular, even a more powerful variant of the Kakutani theorem, namely the
Fan–Glicksberg theorem, is not applicable. The reasons are as follows: To prove
the existence result using a fixed-point theorem, we need to consider players’
best responses. Let the players’ best response be represented by a correspondence
Γ : F ⇒ F . The correspondence Γi : F−i ⇒ Fi is required to satisfy the following
properties: first, Γi must be compact, convex, and nonempty; second, Γi must be
upper hemicontinuous (u.h.c.). However, in our game, neither of these properties
holds naturally. For the first property, because of the tie-breaking rule, a best
response may fail to exist. For instance, assuming there are only two players
competing, if player 1 bids 1 with certainty, then there is no best response for
player 2. In addition, since the action space is unbounded, the value of Γi may
also be unbounded. For the second property, because of the tie-breaking rule,
Γi( lim

F−i→F∗
−i

F−i) may fail to exist, where F ∗
−i denotes the limit of the sequence

F−i. Even if it exists, the utility function is not continuous in the presence of
ties; hence the best response mapping fails to be upper hemicontinuous. These
obstacles make a direct application of the fixed-point theorem impossible, which
explains the technical necessity of our discretization-based approach.

4 Nash Equilibrium Characterization of A Single
Battlefield

In this section, we analyze Nash equilibrium in the case of a single battlefield,
i.e., the special case where m = 1. We begin by providing a complete characteri-
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zation of the structure of Nash equilibrium. Our analysis reveals that the upper
endpoints of the supports of the players’ Nash equilibrium strategies coincide,
and the minimum value of a player’s support above zero is inversely correlated
with their budget. Furthermore, we prove the uniqueness of the Nash equilibrium
when at least two players share the maximum budget.

4.1 Characterization of Nash Equilibrium

With only one battlefield, we omit the subscript j in this section, and any Nash
equilibrium can be represented by a distribution profile (Fi)i∈[n] on the single
battlefield. Additionally, without loss of generality, we assume vi = 1 for every
player i.

We first show that for any Nash equilibrium, ∀i ∈ [n], Fi has no mass point
in (0,+∞) (see Lemma 6 and Lemma 7). Then we establish that, in any Nash
equilibrium, 0 is the common infimum of the supports of all players’ strategies,
and the common supremum of the supports of all players’ strategies is the same
(see Lemma 8 and Lemma 9).

The following lemma states that, for any x > 0, in any Nash equilibrium,
there can be at most one player i whose strategy Fi(x) assigns a non-zero measure
at x.

Lemma 6. For any Nash equilibrium (Fi)i∈[n], we have #{i : Fi(x) ̸= Fi(x
−)} ≤

1, ∀x > 0.

The next lemma examines the characteristics of the support of players’ strate-
gies in a Nash equilibrium.

Lemma 7. For any Nash equilibrium (Fi)i∈[n], we have

1.
⋃

i Suppi is an interval starting from 0.
2.

⋃
i′ ̸=i Suppi′ =

⋃
î Suppî, ∀i.

3. ∀x ∈
⋃

i Suppi, #{i|x ∈ Suppi} ≥ 2.

Our next lemma states that, for any player, the support of their strategy in
a Nash equilibrium either includes the point {0} or contains points arbitrarily
close to 0.

Lemma 8. Let ϵ > 0, which can be chosen to be arbitrarily small. For any Nash
equilibrium (Fi)i∈[n], ∀i, we have [0, ε] ∩ Suppi ̸= ∅.

The following lemma is key to the proof of Theorem 2. It asserts that the sup-
port of each equilibrium strategy, excluding {0}, is a single continuous interval,
and such continuous intervals of all players share the same right endpoint.

Lemma 9. For any Nash equilibrium (Fi)i∈[n], ∀i, we have that there exists
L > 0 such that supSuppi = L, and Suppi ∩ (0, L) = (ci, L), for some ci ≥ 0.
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By Lemma 9, let L denote the common supremum of all players’ supports,
that is, L = supSuppi for every player i. Using Lemmas 6 to 9, we establish
a complete characterization of the structure of Nash equilibrium. Theorem 2
states that when there is a single player with the largest budget, the support of
this player’s equilibrium strategy is a single continuous interval [0, L]. For the
player with the second largest budget, the support of its equilibrium strategy is
also a single continuous interval [0, L], but it includes a non-zero measure at 0.
For all other players, the supports of their equilibrium strategies all include a
non-zero measure at 0, and are increasing in their budgets in subset relationship,
as illustrated in the plot on the left-hand side of Figure 1. When multiple players
have the largest budget, the supports of their equilibrium strategies are all [0, L].
For the remaining players, the supports of their equilibrium strategies include a
non-zero measure at 0, and the supports are increasing in their budgets in subset
relationship, as depicted in the plot on the right-hand side of the Figure 1.

Player 1

Player 2

Player 3

Player 4

Player n

0 L
Player 1

Player 2

Player 3

Player 4

Player n

0 L

B1 > B2 > B3 > B4 > · · · > Bn B1 = B2 > B3 > B4 > · · · > Bn

Fig. 1. The support of Nash equilibrium strategies, blue dot indicates mass point of
distribution, black line represents support of distribution. The only difference between
the left and right figures is that, in the left figure, player 2 has a mass point at 0,
whereas in the right figure, player 2 does not have a mass point at 0.

Theorem 2. Relabel the players so that B1 ≥ B2 ≥ · · · ≥ Bn, and define i′ :=
max{i : Bi = B2}. For any Nash equilibrium (Fi)i∈[n] and supports (Suppi)i∈[n]

of equilibrium strategies, there exists L > 0 such that:

1. If B1 > B2, then we have
(a) Supp1 = [0, L], F1(0) = 0,
(b) Suppi = [0, L] and Fi(0) > 0 for all i ∈ {2, 3, · · · , i′},
(c) Suppi = {0} ∪ [hi, L] and Fi(0) > 0, with hi′+1 > 0 and hi ≥ hi−1, for

all i ≥ i′ + 1.
2. If B1 = B2, then we have

(a) Suppi = [0, L] and Fi(0) = 0 for all i ∈ {1, 2, · · · , i′}.
(b) Suppi = {0} ∪ [hi, L] and Fi(0) > 0, with hi′+1 > 0 and hi ≥ hi−1, for

all i ≥ i′ + 1.
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Theorem 2 provides the structure of the support of Nash equilibrium strate-
gies for multiple players on a single battlefield. These structures are crucial
for determining Nash equilibrium strategies. Based on these structures, we can
deduce the relationships between the strategies of the players. We find that,
whether B1 > B2 or B1 = B2, the strategy of player 2 is closely related to the
strategies of the subsequent players. The following lemma presents two impor-
tant properties: (1) the strategy of any player i ∈ {3, 4, · · · , n} is identical to
that of player 2 on player i’s support set, excluding {0}, and (2) player 1 and
player 2 adopt the same strategy if B1 = B2.

Lemma 10. Given the budget vector B = (B1, B2, · · · , Bn) satisfies B1 ≥ B2 ≥
B3 ≥ · · · ≥ Bn, then we have that for any player i ∈ {3, 4, · · · , n}, Fi(x) = F2(x)
for all x ∈ Suppi\{0}. Additionally, if B1 = B2, then F1(x) = F2(x) for all
x ∈ Supp2.

Let pi denote the probability of the player i bidding 0 and hi = inf(Suppi\{0}).
The following lemma describes the relationship between pi and hi for player
i ∈ {3, 4, · · · , n}.

Lemma 11. For player i ∈ {3, 4, · · · , n}, Fi(hi) = F2(hi) = pi.

According to Theorem 2, Lemma 10 and Lemma 11, we can observe that in
Nash equilibrium, the strategy of player i ∈ [n] can be expressed by F1, F2, hi,
L. We can set up a system of equations to solve for the Nash equilibrium. The
system can be divided into two cases:

– Case (1): B1 > B2 ≥ B3 ≥ · · · ≥ Bn.
– Case (2): B1 = B2 ≥ B3 ≥ · · · ≥ Bn.

Owing to space constraints, we only present the system of equations cor-
responding to the Case (2), while the system for Case (1) is included in the
Appendix C of the full version.

Define Qi =
∏

r>i pr. For Case (2), we have B1 = B2 = · · · = Bi′ > Bi′+1 ≥
· · · ≥ Bn, which implies that 0 < hi′+1 ≤ · · · ≤ hn, 0 = h1 = · · · = hi′ , and
pi > 0, ∀i ≥ i′ + 1. Therefore, the system of equations is as follows:

∀x ∈ [hn, L],∀i ∈ [n],

{
Fi(x) = ( xL )

1
n−1 ,∫ L

hn
xfn(x)dx = Bn.

∀x ∈ [hr, hr+1], ∀r ∈ {i′ + 1, · · · , n− 1},∀i ≤ r,

Fi(x) =
[

x
LQr

] 1
r−1

,∫ hr+1

hr
xfr(x)dx = Br −Br+1.

∀x ∈ [0, hi′+1], ∀r ∈ {1, 2, · · · , i′},

{
[Fr(x)]

i′−1Qi′ =
x
L ,∫ hi′+1

0
xfi′(x)dx = Bi′ −Bi′+1

We derive the following corollary based on the system of equations, which
applies to the case where there are two players with B1 ≥ B2 competing on a
single battlefield. It is important to note that our corollary aligns with the Nash
equilibrium results presented in the paper [19].
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Corollary 1. If there are only two players with B1 ≥ B2 and a single battlefield,
then their Nash equilibrium strategies are

F1(x) =
x

2B1
, x ∈ [0, 2B1]; F2(x) =

B2

2B2
1

x+ 1− B2

B1
, x ∈ [0, 2B1].

4.2 The Uniqueness of the Nash Equilibrium

Given that there are at least two players with the maximum budget, i.e., the
budget vector B = (B1, B2, · · · , Bn) satisfies B1 = B2 ≥ B3 ≥ · · · ≥ Bn, we
prove the uniqueness of the Nash equilibrium. With the help of the system of
equations, we derive Theorem 3, which establishes the uniqueness of the Nash
equilibrium.

Theorem 3. If the budget vector B = (B1, B2, · · · , Bn) satisfies B1 = B2 ≥
B3 ≥ · · · ≥ Bn, then the Nash equilibrium for the GL game with a single battle-
field is unique.

Assume the budget vector B satisfies B1 = B2 = · · · = Bi′ > Bi′+1 ≥ · · · ≥
Bn. By Theorem 2, we have 0 = h1 = h2 = · · · = hi′ < hi′+1 ≤ · · · ≤ hn,
and by Lemma 11, 0 = p1 = p2 = · · · = pi′ < pi′+1 ≤ · · · ≤ pn. Lemmas 10
and 11 together imply that, in Nash equilibrium, every player’s strategy can be
expressed in terms of player 2’s strategy F2. Hence it suffices to show that player
2’s strategy F2 is unique. Here, we define Mi =

∏
i′≥i pi′ and according to the

system of equations above, we can observe (1) in the interval [0, hi′+1], player
2’s strategy F2 depends only on L and Mi′+1; (2) for r ∈ {i′ + 1, · · · , n− 1}, in
[hr, hr+1] it depends on L and Mr+1; (3) in [hn, L] it depends solely on L. Thus
we need only verify the uniqueness of L, Mi′+1 and Mr+1, r ∈ {i′+1, · · · , n−1}.
Starting from player n and moving backwards, we can compute each Mi and L
uniquely from successive budget differences Bi−Bi+1. This backward induction
shows that L and all relevant M -values are uniquely determined; consequently
F2 is unique, and therefore the Nash equilibrium itself is unique.

5 Analysis of Nash Equilibrium with Multiple Battlefields

In this section, we analyze the properties of the Nash equilibrium in the General
Lotto game with multiple battlefields. When there are multiple battlefields, a
player may choose to abandon a battlefield by consistently bidding 0 on it. We
consider two extreme cases:

– Suppose that all valuations vij are independently and randomly drawn from
some continuous distributions, then with probability one, the condition vi,j

vi,j′
̸=

vi′,j
vi′,j′

holds for all i ̸= i′ and j ̸= j′. We find that the average number of battle-
fields in which each player participates (i.e., bids larger than 0 with positive
probability) becomes arbitrarily close to one as n becomes sufficiently large
(see Theorem 5).
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– In the symmetric setting, where for any player i, Bi = B, and for any two
players i ̸= i′ and any battlefield j, vij = vi′j = vj , we provide a solution for
the Nash equilibrium (see Theorem 6).

Finally, we examine intermediate case between these two extremes by pro-
viding an example to illustrate the non-uniqueness of the Nash equilibrium.

Theorem 4. For any Nash equilibrium and any two battlefields j ̸= j′, let S and
S′ represent the sets of players who do not always bid 0 on j and j′, respectively.
If vi,j

vi,j′
̸= vi′,j

vi′,j′
holds for all i ̸= i′, then the cardinality of the set S ∩ S′ is not

greater than 3.

Proof. Let F·,· = (Fi,j)i∈[n],j∈[m] denote an arbitrary equilibrium. By Theorem
2, for any δ > 0, every i ∈ S should bid in [Lj−δ, Lj ] with positive probability on
battlefield j. By Lemma 5, ui,j(·, F−i,j) is continuous on (0, T ] (the definition of
T is given in Lemma 4), then by Lemma 1 we have ui,j(Lj , F−i,j) = aiLj + bi,j .

Consider an arbitrary i ∈ S ∩ S′.

1. If bi,j = bi,j′ = 0, then ui,j(Lj , F−i,j) = aiLj = vi,j and ui,j′(Lj′ , F−i,j′) =

aiLj′ = vi,j′ , therefore vi,j
vi,j′

=
aiLj

aiLj′
=

Lj

Lj′
. The right-hand side does not

depend on i. Since vi,j
vi,j′

̸= vi′,j
vi′,j′

, for any given (j, j′) there can be at most
one such i.

2. If bi,j = 0 and bi,j′ > 0, by Lemma 2 we have at most one such i given j′.
3. If bi,j > 0, again by Lemma 2, we have at most one such i given j.

We conclude that at most three players in the set S ∩ S′. ⊓⊔

Based on Theorem 4, we can derive the following theorem.

Theorem 5. Let Di denote the set of battlefields where player i does not always
bid 0, and di denote the cardinality of the set Di. If vij

vij′
̸= vi′j

vi′j′
holds for all

pairs of players i ̸= i′ and all pairs of battlefields j ̸= j′, we have 1
n

∑n
i=1 di <

1 +m
√

3
n .

Proof. Let Sj denote the set of players who do not always bid 0 on battlefield j,
and Sj′ denote the set of players who do not always bid 0 on j′. By Theorem 4,
we have

∑
(j,j′) |Sj ∩ Sj′ | ≤ 3 ·

(
m
2

)
. Note that

∑
(j,j′) |Sj ∩ Sj′ | =

∑n
i=1

(
di

2

)
. We

establish the following inequality

n∑
i=1

(
di
2

)
=

∑
(j,j′)

|Sj ∩ Sj′ | ≤ 3 ·
(
m

2

)
=

3m(m− 1)

2
.

Using the Cauchy inequality, we have

n∑
i=1

(
di
2

)
≥ 1

2n
(

n∑
i=1

di)
2 − 1

2

n∑
i=1

di.
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Therefore, we obtain

1

2n
(

n∑
i=1

di)
2 − 1

2

n∑
i=1

di ≤
3m(m− 1)

2
.

Let ζ = 1
n

∑n
i=1 di, we have nζ2 − nζ − 3m(m− 1) ≤ 0. Solving this inequality,

we obtain ζ ≤ 1
2 +

√
1
4 + 3m(m−1)

n . Furthermore,√
1

4
+

3m(m− 1)

n
<

1

2
+m

√
3

n
.

Finally, we have 1
n

∑n
i=1 di < 1 +m

√
3
n . ⊓⊔

Theorem 5 states that for a fixed number of battlefields, the average number
of battlefields in which each player participates can be arbitrarily close to one
as n becomes sufficiently large. Specifically, for n = m2, the average value is less
than 2.73.

Although the computation of the Nash equilibria is highly complex in the
multi-player and multi-battlefield setting, it can be computed in certain sym-
metric settings. The following theorem provides a symmetric solution of the
Nash equilibria in a symmetric setting.

Theorem 6. Suppose we have B > 0 such that Bi = B for every i, and for
every j we have vj > 0 such that vij = vj for every i. Then the strategies
given by Fij(x) = ( vx

vjnB
)

1
n−1 for every i and j, where v =

∑
j∈[m] vj, is a Nash

equilibrium.

Proof. Consider the symmetric Nash equilibrium.
Let eij denote the expected bid of player i on battlefield j, and Lj denote

the upper bound of the support on the battlefield j. Note that all players have
the same expected bid on battlefield j, and all players play the same strategy,
i.e., eij = ej and Fij(x) = Fj(x) for ∀i. Therefore, we have

uij = vj(Fj(x))
n−1 =

vj
Lj

x.

So we can derive {
Fj(x) = ( x

Lj
)

1
n−1 ,

fj(x) =
1

n−1
1
Lj

( x
Lj

)
2−n
n−1 .

The expected value of the distribution Fj(x) is equal to the budget. Therefore,
we have

ej =

∫ Lj

0

xfj(x)dx =

∫ Lj

0

x
1

n− 1

1

Lj
(
x

Lj
)

2−n
n−1 dx =

Lj

n
.
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Thus we get Lj = nej . By Lemma 1, we have v1
L1

=
vj
Lj

and Lj =
vj
v1
L1 for ∀j.

We can obtain nej =
vj
v1
L1, thereby ej =

vjL1

v1n
.

Due to the budget constraints, we have∑
j∈[m]

ej =
∑
j∈[m]

vjL1

v1n
=

L1v

v1n
= B,

we get L1 = v1nB
v , and Lj =

vjnB
v , ∀j ∈ [m]. Finally, we have Fj(x) =(

x
vjnB

v

) 1
n−1

=
(

vx
vjnB

) 1
n−1

= Fij(x). ⊓⊔

Following Theorem 6, we derive the following corollary, which applies to
the case where there are two players with B1 = B2 competing across multiple
battlefields where the values of these battlefields are symmetric between the
players. Our corollary 2 also implies the Nash equilibrium in the symmetric
setting established by Roberson and Kovenock [19].

Corollary 2. If there are only two players with B1 = B2 = B and multiple
battlefields with v1j = v2j for all j, then

F1j(x) = F2j(x) =
v

2Bvj
x, x ∈ [0,

2Bvj
v

],

is a Nash equilibrium.

Although we prove in the previous section that Nash equilibrium is unique
when at least two players have the maximum budget, this uniqueness does not
hold when there are multiple battlefields. Here is an example.

Example. Consider a game with three players and two battlefields. The players
have budgets of B1 = 10, B2 = 6, B3 = 6, respectively, and each player assigns
a value of 1 to each battlefield.

For this example, we examine two budget vectors:

(1) B(1) = ((5, 4, 2), (5, 2, 4)), in which the expectation of bids on the first bat-
tlefield is (5, 4, 2) corresponding to the resources invested by player 1, 2,
and 3 in that battlefield respectively, and the expected bids on the second
battlefield is (5, 2, 4).

(2) B(2) = ((5, 3, 3), (5, 3, 3)), in which the expected bids on the first battlefield
is (5, 3, 3) and the expected bids on the second battlefield is (5, 3, 3).

Let pij denote the probability that player i bids 0 on battlefield j, and let
Lj denote the upper endpoint of the players’ support on battlefield j.

In the first budget vector, it is easy to see that p11 = p12, p21 = p32, p31 = p22
and L1 = L2 = 11.9231.

In the second budget vector, it follows that p11 = p12, p21 = p22, p31 = p32
and L1 = L2 = 12.5547. We observe the symmetry in strategy between the two
budget vectors B(1) and B(2).

Therefore, these strategies indeed form a Nash equilibrium.
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6 Conclusion

We extend the General Lotto game from a two-player game to a multiplayer game
in a general setting, proving the existence of Nash equilibrium in the multiplayer
version and providing a detailed characterization of the Nash equilibrium on a
single battlefield. Additionally, we establish the uniqueness of Nash equilibrium
in certain single-battlefield scenarios. Finally, we generalize the game from a sin-
gle battlefield to multiple battlefields. Under the setting of multiple battlefields,
we find that the average number of battlefields in which each player participates
(i.e., bids larger than 0 with positive probability) becomes arbitrarily close to
one as n becomes sufficiently large. We also show the non-uniqueness of Nash
equilibrium by providing an example.

Acknowledgments. Zihe Wang was supported by the National Natural Science Foun-
dation of China (Grant No. 62172422), the Fund for Building World-Class Universities
(Disciplines) of Renmin University of China, and the Key Laboratory of Interdisci-
plinary Research of Computation and Economics (Shanghai University of Finance and
Economics), Ministry of Education. Weiran Shen was supported by the National Nat-
ural Science Foundation of China (Grant No. 72192805). Jie Zhang was partially sup-
ported by a Leverhulme Trust Research Project Grant (2021–2024) and the EPSRC
grant (EP/W014912/1). This work was also supported by the Public Computing Cloud
of Renmin University of China.

References

1. Ahmadinejad, A., Dehghani, S., Hajiaghayi, M., Lucier, B., Mahini, H., Seddighin,
S.: From duels to battlefields: Computing equilibria of blotto and other games.
Mathematics of Operations Research 44(4), 1304–1325 (2019)

2. Beale, E., Heselden, G.: An approximate method of solving blotto games. Naval
Research Logistics Quarterly 9(2), 65–79 (1962)

3. Behnezhad, S., Dehghani, S., Derakhshan, M., Hajiaghayi, M., Seddighin, S.: Fast
and simple solutions of blotto games. Operations Research 71(2), 506–516 (2023)

4. Boix-Adserà, E., Edelman, B.L., Jayanti, S.: The multiplayer colonel blotto game.
In: Proceedings of the 21st ACM Conference on Economics and Computation. pp.
47–48 (2020)

5. Borel, E.: La théorie du jeu et les équations intégrales à noyau symétrique. Comptes
rendus de l’Académie des sciences 173, 1304–1308 (1921)

6. Borel, E.: ... Applications [de la théorie des probabilités] aux jeux de hasard: cours
professé à la Faculté des sciences de Paris, vol. 2. Gauthier-Villars (1938)

7. Chandan, R., Paarporn, K., Alizadeh, M., Marden, J.R.: Strategic investments in
multi-stage general lotto games. In: 2022 IEEE 61st Conference on Decision and
Control (CDC). pp. 4444–4448. IEEE (2022)

8. Chandan, R., Paarporn, K., Kovenock, D., Alizadeh, M., Marden, J.R.: The art of
concession in general lotto games. In: International Conference on Game Theory
for Networks. pp. 310–327. Springer (2022)

9. Chandan, R., Paarporn, K., Marden, J.R.: When showing your hand pays off:
Announcing strategic intentions in colonel blotto games. In: 2020 American Control
Conference (ACC). pp. 4632–4637. IEEE (2020)



18 Y. Liu et al.

10. Chowdhury, S.M., Kovenock, D., Sheremeta, R.M.: An experimental investigation
of colonel blotto games. Economic Theory 52, 833–861 (2013)

11. Donahue, K., Kleinberg, J.: Private blotto: Viewpoint competition with polarized
agents. arXiv preprint arXiv:2302.14123 (2023)

12. Dziubiński, M.: Non-symmetric discrete general lotto games. International Journal
of Game Theory 42, 801–833 (2013)

13. Hart, S.: Discrete colonel blotto and general lotto games. International Journal of
Game Theory 36(3-4), 441–460 (2008)

14. Hortala-Vallve, R., Llorente-Saguer, A.: Pure strategy nash equilibria in non-zero
sum colonel blotto games. International Journal of Game Theory 41, 331–343
(2012)

15. Iliaev, D., Oren, S., Segev, E.: A tullock-contest-based approach for cyber security
investments. Annals of Operations Research 320(1), 61–84 (2023)

16. Jayanti, S.: Nash equilibria of the multiplayer colonel blotto game on arbitrary
measure spaces. arXiv preprint arXiv:2104.11298 (2021)

17. Konrad, K.A., Morath, F.: How to preempt attacks in multi-front conflict with lim-
ited resources. European Journal of Operational Research 305(1), 493–500 (2023)

18. Kovenock, D., Roberson, B.: Coalitional colonel blotto games with application to
the economics of alliances. Journal of Public Economic Theory 14(4), 653–676
(2012)

19. Kovenock, D., Roberson, B.: Generalizations of the general lotto and colonel blotto
games. Economic Theory 71, 997–1032 (2021)

20. Liu, Y., Ni, B., Shen, W., Wang, Z., Zhang, J.: Stackelberg vs. nash in the lot-
tery colonel blotto game. In: Proceedings of the Thirty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI-25. pp. 3961–3969. International Joint
Conferences on Artificial Intelligence Organization (2025)

21. Liu, Y., Qin, Y., Wang, Z.: Simultaneous all-pay auctions with budget constraints.
In: International Computing and Combinatorics Conference. pp. 333–345. Springer
(2025)

22. Macdonell, S.T., Mastronardi, N.: Waging simple wars: a complete characterization
of two-battlefield blotto equilibria. Economic Theory 58(1), 183–216 (2015)

23. Myerson, R.B.: Incentives to cultivate favored minorities under alternative electoral
systems. American Political Science Review 87(4), 856–869 (1993)

24. Paarporn, K., Chandan, R., Alizadeh, M., Marden, J.R.: Incomplete and asymmet-
ric information in general lotto games. IEEE Transactions on Automatic Control
(2024)

25. Perchet, V., Rigollet, P., Le Gouic, T.: An algorithmic solution to the blotto game
using multi-marginal couplings. In: Proceedings of the 23rd ACM Conference on
Economics and Computation. pp. 208–209 (2022)

26. Roberson, B.: The colonel blotto game. Economic Theory 29(1), 1–24 (2006)
27. Sahuguet, N., Persico, N.: Campaign spending regulation in a model of redistribu-

tive politics. Economic Theory 28(1), 95–124 (2006)
28. Shishika, D., Guan, Y., Dorothy, M., Kumar, V.: Dynamic defender-attacker blotto

game. In: 2022 American Control Conference (ACC). pp. 4422–4428. IEEE (2022)
29. Vu, D.Q., Loiseau, P.: Colonel blotto games with favoritism: Competitions with

pre-allocations and asymmetric effectiveness. In: Proceedings of the 22nd ACM
Conference on Economics and Computation. pp. 862–863 (2021)

30. Vu, D.Q., Loiseau, P., Silva, A.: Efficient computation of approximate equilibria in
discrete colonel blotto games. In: Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI-18. pp. 519–526. International
Joint Conferences on Artificial Intelligence Organization (2018)


