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Abstract
Resource competition problems are often mod-
eled using Colonel Blotto games, where play-
ers take simultaneous actions. However, many
real-world scenarios involve sequential decision-
making rather than simultaneous moves.
To model these dynamics, we represent the Lot-
tery Colonel Blotto game as a Stackelberg game,
in which one player, the leader, commits to a strat-
egy first, and the other player, the follower, re-
sponds. We derive the Stackelberg equilibrium for
this game, formulating the leader’s strategy as a bi-
level optimization problem.
To solve this, we develop a constructive method
based on iterative game reductions, which allows
us to efficiently compute the leader’s optimal com-
mitment strategy in polynomial time. Additionally,
we identify the conditions under which the Stack-
elberg equilibrium coincides with the Nash equi-
librium. Specifically, this occurs when the budget
ratio between the leader and the follower equals a
certain threshold, which we can calculate in closed
form. In some instances, we observe that when the
leader’s budget exceeds this threshold, both players
achieve higher utilities in the Stackelberg equilib-
rium compared to the Nash equilibrium. Lastly, we
show that, in the best case, the leader can achieve
an infinite utility improvement by making an opti-
mal first move compared to the Nash equilibrium.

1 Introduction
Competing for resources with limited budgets in strategic set-
tings has diverse and impactful applications. These scenarios
arise in areas such as electoral competition, security, crowd-
sourcing and recommendation systems [Behnezhad et al.,
2018; Pagey et al., 2023; Haggiag et al., 2022; Anwar et al.,
2024]. Many of these applications are modeled by Colonel
Blotto games [Borel, 1921], which have garnered significant
attention from researchers across disciplines, including com-
puter science, economics, and sociology [Kohli et al., 2012;
Jackson and Nei, 2015; Fu and Iyer, 2019].

Colonel Blotto games have numerous variants, where play-
ers allocate limited resources across multiple battlefields. Re-

sources can be discrete, like troops, or continuous, like bid
prices in auctions. Player utility on each battlefield depends
on the invested resources and the battlefield’s outcome func-
tion, which can follow either a winner-takes-all rule or a
proportional rule. The latter, known as the Lottery Colonel
Blotto game, is the focus of this paper.

Colonel Blotto games are highly versatile, and most ex-
isting research treats them as normal-form games, emphasiz-
ing equilibrium existence and computation in restricted set-
tings [Roberson, 2006; Hortala-Vallve and Llorente-Saguer,
2012; Macdonell and Mastronardi, 2015; Perchet et al.,
2022]. However, many real-world scenarios involve se-
quential decision-making rather than simultaneous play. For
example, in marketplaces such as advertising auctions, e-
commerce, and cloud services, large enterprises often act
as leaders, committing to budget distribution strategies that
smaller retailers observe and respond to. These dynamics
highlight the importance of studying Colonel Blotto games in
sequential settings, like Stackelberg games, where one player
commits to a strategy before the other makes its decision
[Hicks, 1935; Schelling, 1960]. In this paper, we model the
Lottery Colonel Blotto game as a Stackelberg game.

The Stackelberg game can be viewed as a sequential game.
Many previous studies have focused on scenarios involving
an attacker as the follower and a defender as the leader, both
operating under cost constraints rather than budget limita-
tions. In these models, each player determines their effort
to maximize their individual payoffs [Zhuang and Bier, 2007;
Cavusoglu et al., 2008; Hausken et al., 2008; Hausken, 2012].
However, [Iliaev et al., 2023] point out that models without
budget constraints are easier to solve for Nash equilibria, as
they reduce to a single-battlefield model with multiple values.
[Iliaev et al., 2023] also consider budget constraints in their
comparison of sequential and simultaneous games. However,
they only impose budget constraints on the follower, while the
first mover incurs costs without any budget limitations, and
both players have symmetric valuations for the battlefield. In
contrast, we propose a more general model for broader ap-
plicability, in which both the leader and the follower have
budgets, and the battlefield values are asymmetric. We also
compare the sequential game (the Stackelberg equilibrium)
with the simultaneous game (Nash equilibria) to explore the
differences in outcomes under these conditions.

To compare sequential and simultaneous games, we ana-



lyze the Stackelberg equilibrium and Nash equilibria. How-
ever, obtaining a closed-form representation of Nash equilib-
ria in Colonel Blotto games is a known challenge [Perchet
et al., 2022; Li and Zheng, 2022]. Such representations
have only been derived in specific cases, such as when bat-
tlefield values are identical [Roberson, 2006] or when play-
ers have symmetrical budgets [Hortala-Vallve and Llorente-
Saguer, 2012; Boix-Adserà et al., 2020]. We focus on
comparing the Stackelberg equilibrium with Nash equilib-
ria, particularly in cases where Nash equilibria can be ex-
plicitly solved. In these solvable instances, we have made
some interesting observations. For the Stackelberg equilib-
rium, the key challenge is computing the leader’s optimal
commitment. Previous work has suggested negative con-
clusions about this problem. Specifically, finding an opti-
mal pure strategy for the leader is NP-hard in normal-form
games [Conitzer and Sandholm, 2006; Korzhyk et al., 2010;
Letchford and Conitzer, 2010], as it involves solving a bi-
level optimization problem [Renou, 2009]. To address this,
we explore new insights into optimal commitment and best-
response dynamics, which allow us to compare the Stackel-
berg equilibrium with Nash equilibria in these games.

1.1 Our Contribution
Our contributions are multi-fold:

• We offer a novel understanding of the follower’s best
response using a water-filling approach.

• We construct a series of game reductions by split-
ting battlefields, ensuring that the follower’s valuation
for each sub-battlefield is uniform. We have proven
that there exists an injective mapping between players’
strategies before and after each reduction of the game.
Additionally, the players’ utilities remain unchanged.
By analyzing the leader’s commitment in the reduced
game, we characterize the optimal commitment in the
original game. Ultimately, we reduce the support of the
follower’s best response strategy from 2n−1 to n, where
n is the number of battlefields.

• By reformulating the leader’s objective and reducing the
search space for the follower’s best response strategy, we
can compute the leader’s optimal commitment strategy
by a polynomial number of iterations.

• We provide the sufficient and necessary conditions, un-
der which the Stackelberg equilibrium coincides with
the Nash equilibria of the simultaneous-move game.

• Finally, we address our motivating questions by con-
structing extreme cases that compare the leader’s util-
ity when using the optimal commitment strategy to its
utility in Nash equilibria. We observe that this ratio is
also dependent on the leader’s budget relative to the fol-
lower’s budget. Furthermore, we provide an example
illustrating how the follower’s utility may still increase
when faced with the leader’s optimal commitment.

1.2 Related Work
Colonel Blotto Games and Their Variants. There is an ex-
tensive body of literature on Colonel Blotto games.

When the outcome function is winner-takes-all, the player
who allocates the most resources to a battlefield wins that bat-
tlefield. In this line of work, a pure Nash equilibrium does not
always exist, while a mixed Nash equilibrium always does
[Roberson, 2006; Macdonell and Mastronardi, 2015]. Specif-
ically, each player’s strategy is a complex joint distribution
over an n-dimensional simplex. [Roberson, 2006] provides a
closed-form solution for the Nash equilibrium in the case of
two players and multiple battlefields with equal value. [Mac-
donell and Mastronardi, 2015] provide a detailed and com-
prehensive analysis of the Nash equilibrium in the case of two
players and two battlefields with different values. In view of
the difficulty in analyzing Nash equilibrium, researchers pro-
pose the General Lotto game, a well-known variant. Specif-
ically, each player’s strategy is a joint distribution over the
n-dimensional simplex, ensuring that the expected allocation
of resources does not exceed the budget, rather than strictly
staying within the budgets [Hart, 2008; Dziubiński, 2013;
Kovenock and Roberson, 2021]. The Nash equilibrium solu-
tion of the General Lotto game has been obtained [Kovenock
and Roberson, 2021].

When the outcome function is proportional, the probabil-
ity of a player winning a battlefield depends on the proportion
of resources they allocate compared to the total resources al-
located by all players. This type of Colonel Blotto games
is also called the Lottery Colonel Blotto game. In this line
of work, it is called symmetric if all players have equal bud-
gets; otherwise, it is asymmetric. When all battlefields have
the same value, and this value is consistent for all players,
the game is homogeneous. If the battlefields possess different
values, but these values remain the same for every player, the
game is heterogeneous. Finally, when the battlefields’ val-
ues differ, and these values vary for each player, the game
is termed a generalized game. The Lottery Colonel Blotto
game has been proven to possess pure Nash equilibria [Kim
et al., 2018]. [Friedman, 1958] shows that the pure Nash
equilibrium is unique and exhibits proportionality features in
a two-player setup with heterogeneous battlefield values and
asymmetric player budgets. [Duffy and Matros, 2015] ex-
tend Friedman’s analysis from two players to multiple play-
ers. [Kim et al., 2018] provide a method to identify all pure
Nash equilibria in the case of two players with asymmet-
ric budgets and multiple battlefields with generalized values,
and present an example where the pure Nash equilibrium is
not unique. [Kovenock and Arjona, 2019] provide the best
response given the strategy of the other player. However,
none of the existing work has provided a closed-form rep-
resentation of the pure Nash equilibria [Kim et al., 2018;
Kovenock and Arjona, 2019]. In a variant where the out-
come function of a battlefield is determined by the Tullock
rent-seeking contest success function, the proportional rule is
parameterized by a battle-specific discriminatory power and a
battle-and-contestant-specific lobbying effectiveness [Xu and
Zhou, 2018; Osorio, 2013; Li and Zheng, 2022]. In this vari-
ant, the existence of a pure Nash equilibrium is not always
guaranteed. [Xu et al., 2022] provide sufficient conditions
for the existence of the pure Nash equilibria, while [Li and
Zheng, 2022] analyze the properties of the pure Nash equi-
libria and provide sufficient conditions for its uniqueness.



Sequential Colonel Blotto Games. There are two types of
sequentiality: one is the sequentiality of the actions taken by
players, and the other is the sequentiality of the appearance
of the battlefields.

In the sequentiality of the actions taken by players, the
first player makes a move, followed by the second player.
Many studies have compared sequential games and simulta-
neous games, in other contexts. For instance, [Zhuang and
Bier, 2007] identify equilibrium strategies for both attacker
and defender in simultaneous and sequential games, although
their model does not consider players’ budgets. [Chandan
et al., 2020] consider three-stage Colonel Blotto games with
stronger and weaker players. In their model, the weaker
player has the option to pre-commit resources to a single
battlefield of its choice, and the stronger player can choose
whether to allocate resources to win that battlefield. [Chan-
dan et al., 2022] propose a two-stage General Lotto game, in
which one of the players has reserved resources that can be
strategically pre-allocated across the battlefields in the first
stage and the players then engage by simultaneously allocat-
ing their real-time resources against each other.

In the sequentiality of the appearance of the battlefields,
all players simultaneously allocate resources in the first bat-
tlefield, then allocate resources in the second battlefield, and
so on. [Anbarci et al., 2023] analyze dynamic Blotto con-
tests, where battlefields are presented to players in a predeter-
mined sequential order. They focus on the sub-game perfect
equilibrium, exploring the existence and uniqueness of this
solution concept. [Xie and Zheng, 2022] construct a pure
strategy Markov perfect equilibrium (when it exists) and pro-
vide closed-form solutions for players’ strategies and winning
probabilities. [Klumpp et al., 2019] explore the strategic al-
location of resources in a dynamic setting where winning a
majority of battlefields is the goal. They provide the optimal
strategies for both players in sub-game perfect equilibrium.
[Li and Zheng, 2021] reveal that the even-split strategy is
robust when players have incomplete information about the
other player’s resource allocation.
Other Variants and Applications. The Colonel Blotto
games and their variants, along with the Tullock contest,
all-pay auction, and their generalizations, can find wide
application in various domains. These include competi-
tion design [Deng et al., 2023], contest design [Ghosh and
Kleinberg, 2014; Levy et al., 2017; Letina et al., 2023;
Dasgupta and Nti, 1998], and auctions [Tang et al., 2016;
Brânzei et al., 2012].

2 Preliminaries
In the Stackelberg model of the Lottery Colonel Blotto game,
let a and b represent the leader and the follower, respectively.
Both players have limited budget constraints, where xa > 0
and xb > 0. These players allocate their budgets across
n battlefields, represented by the set [n] = {1, 2, . . . , n}.
For player i ∈ {a, b}, let xij ≥ 0 denote the budget in-
vested by player i in battlefield j. Throughout this paper,
we consider players’ pure strategies, which are denoted as
xi = (xi1, xi2, · · · , xin). The strategy set for player i is:
Xi ≜ {xi :

∑n
j=1 xij = xi and xij ≥ 0}.

Player i ∈ {a, b} assigns a value to battlefield j as vij ∈
Q>0. Hence, the game can be represented as

G := ⟨{a, b}, [n], xa, xb, (vaj)
n
j=1, (vbj)

n
j=1⟩.

Given a strategy profile (xa,xb), the utility of player i ∈
{a, b} on battlefield j ∈ [n] is defined as the proportion of
the budget allocated by player i relative to the total budgets
allocated by both players. That is,

uij(xij , x−ij) =
xij

xij + x−ij
· vij . (1)

In the event that both players allocate zero budget to a battle-
field j, we assume that the follower will win the entire bat-
tlefield. This assumption is based on the rationale that the
follower can achieve this outcome by allocating even an ar-
bitrarily small amount of budget to j ∈ [n]. This assumption
guarantees the existence of the follower’s best response strat-
egy. Using a linear aggregation function, player i’s utility in
the game is given by:

ui(xa,xb) =
n∑

j=1

uij =
n∑

j=1

xij · vij
xij + x−ij

, ∀i ∈ {a, b}. (2)

When xaj > 0, for all j ∈ [n], [Kovenock and Arjona,
2019] characterize the other player’s best response function
as follows.
Lemma 1. [Kovenock and Arjona, 2019] Given the leader’s
strategy xa = (xaj)

n
j=1, where xaj > 0, ∀j ∈ [n], assume

without loss of generality that all battlefields are ordered such
that vb1

xa1
≥ vb2

xa2
≥ · · · ≥ vbn

xan
. The unique optimal budget

allocation of the follower, xb = (xb1, xb2, · · · , xbn), to bat-
tlefield j ∈ [n] is characterized as follows:

xbj =


(xajvbj)

1
2

(
xb+

∑
j′∈K(xa)

xaj′

)
∑

j′∈K(xa)

(xaj′vbj′)
1
2

− xaj , if j ∈ K(xa);

0, if j ∈ [n]\K(xa),

(3)

where K(xa) = {1, · · · , k∗} is such that

k∗ = max

k ∈ [n] :
vbj
xaj

>

(
j∑

l=1

(xalvbl)
1
2

)2

(
xb +

j∑
l=1

xal

)2 , ∀j ≤ k

 . (4)

This characterization is a useful tool for our subsequent
analysis. To use this result to characterize the leader’s op-
timal commitment, we first assume that the leader will allo-
cate a positive budget to every battlefield. Following a se-
ries of constructions in Section 3, we identify the support of
the follower’s best response strategies and provide a closed-
form expression of the leader’s optimal commitment strategy
in Section 4. To complete this analysis, we will verify that the
leader indeed allocates a positive budget to every battlefield
in the optimal commitment strategy. We focus on the pure
strategy of the leader.

The uniqueness of the follower’s best response xb will fa-
cilitate the subsequent analysis. However, providing a closed-
form representation of the leader’s optimal commitment strat-
egy remains very challenging. This difficulty primarily arises



from the uncertainty with regard to which battlefields the fol-
lower will abandon, specifically where xbj = 0 for j ∈
[n]\K(xa). For simplicity, we denote K(xa) = [n]\K(xa)
and the support k∗ = |K(xa)|. In the following section, we
characterize the support of the follower’s best response strat-
egy when the leader employs optimal commitment strategy.
This analysis, in turn, will aid in fully computing the leader’s
optimal commitment strategy.

Due to space limitations, some lemmas and most of the
proofs are included in the full version of the paper 1.

3 The Support of the Follower’s Best
Response Strategy

The computation of the leader’s optimal commitment strat-
egy can be formulated as a bi-level optimization problem. In
this scenario, the leader, assuming the follower is a utility
maximizer, selects an optimal strategy in the upper-level op-
timization task, while the follower provides the best response
in the lower-level optimization task. The complexity is com-
pounded by the fact that the support of each player’s strategy
profile can have up to 2n−1 possible combinations. Addition-
ally, it is challenging to determine the exact budget allocation
for each battlefield.

In this section, we demonstrate that when the leader em-
ploys optimal commitment strategy, the support of the fol-
lower’s best response strategy is limited to at most n possible
combinations. This significantly reduces the search space for
the leader’s optimal commitment strategy.

We achieve this characterization by constructing a series of
auxiliary games.

1. Consider a game G, with the leader’s commitment strat-
egy denoted by xa (which may not be optimal), and the
follower’s best response denoted by xb. If we divide
a single battlefield into multiple sub-battlefields in such
a way that the leader and follower’s valuations of the
original battlefield are evenly distributed among these
sub-battlefields, the resulting game is denoted by G(1).
By evenly distributing their budgets across these sub-
battlefields, the utilities for both the leader and the fol-
lower remain unchanged in G(1).

2. By repeatedly performing this battlefield-splitting pro-
cess, we create a game in which the follower values all
battlefields equally. Without loss of generality, we can
rename the battlefields so that the leader values them
in increasing order. Denote this game by G(2). In the
optimal commitment strategy, the leader should allocate
more or at least equal budget to battlefields that they
value strictly higher in order to achieve a strictly greater
payoff.

3. Furthermore, we observe that, in the optimal commit-
ment strategy, when the leader values two battlefields
equally, they should allocate an equal budget to both bat-
tlefields.

4. Following the above procedure, we obtain a game where
vb1 = vb2 = . . . , meaning the follower values all bat-

1The full paper is available at https://arxiv.org/pdf/2410.07690.

tlefields equally. Meanwhile, the leader values the bat-
tlefields in increasing order, with some values strictly
increasing and others remaining equal. Our final opera-
tion is to merge these battlefields that split from the same
battlefield. In this new game G(3), the leader and fol-
lower’s values and budgets across these sub-battlefields
are merged into the original battlefield. Their utilities
remain unchanged from G(2).

With these constructions and observations, we now provide
the main result of this section.
Theorem 1. In a Stackelberg game

G := ⟨{a, b}, [n], xa, xb, (vaj)
n
j=1, (vbj)

n
j=1⟩,

assume without loss of generality that the battlefields are
ordered such that va1

vb1
≤ va2

vb2
≤ · · · ≤ van

vbn
. Then,

when the leader employs the optimal commitment strat-
egy xa, the support of the follower’s best response strat-
egy has at most n possibilities. Specifically, K(xa) ∈
{{1}, {1, 2}, . . . , {1, 2, . . . , n}}. Additionally, if for j, h ∈
[n], vaj

vbj
= vah

vbh
, then the optimal commitment xa satisfies

xaj

xah
=

vaj

vah
.

Technical Remark: The constructions in this section to
derive the main result rely on an interpretation different from
the one provided by [Kovenock and Arjona, 2019]. To prove
Lemma 1, they represent the second player’s best response
strategy as the solution to an optimization problem. By veri-
fying that (3) satisfies the Kuhn-Tucker conditions, which are
both necessary and sufficient, they conclude that (3) is the
unique global constrained maximizer of the problem.

In contrast, we interpret the follower’s optimization prob-
lem as a water-filling process. Initially, the follower allocates
their budget to the battlefields with the highest marginal util-
ity. Note that the first and second derivatives of the follower’s
utility from battlefield j are:

∂ubj

∂xbj
=

∂(
xbjvbj

xaj+xbj
)

∂xbj
=

xajvbj
(xaj + xbj)2

,

∂2ubj

∂x2
bj

=
−2xajvbj

(xaj + xbj)3
< 0.

(5)

Hence, the utility ubj is a concave function with respect
to xbj . As the budget allocation to battlefield j increases, its
marginal utility decreases until it matches the marginal utility
of other battlefields with initially lower marginal utility. From
this point, the follower distributes its budget across these bat-
tlefields, maintaining equal marginal utility, until it eventually
decreases to an even lower level. Ultimately, the follower ex-
hausts its entire budget. The lowest marginal utility is given

by

(∑k∗
l=1(xalvbl)

1
2

)2

(xb+
∑k∗

l=1 xal)
2 , as defined in k∗ in (4).

It is essential to consider whether these game-splitting and
merging operations, as well as the leader’s strategies xa, al-
ter the structure of the set K(xa). This set, K(xa), rep-
resents the battlefields on which the follower allocates pos-
itive budgets. Essentially, there is a mapping between the
leader’s commitment set and the follower’s strategy set xb

across the original game G and the subsequent games G(k)

for k = 1, 2, 3.

https://arxiv.org/pdf/2410.07690


4 The Leader’s Optimal Commitment
Strategy

Theorem 1 characterizes K(xa), the support of the follower’s
best response strategy when the leader employs its optimal
commitment strategy xa. In this section, we formulate the
leader’s objective as an optimization problem for any given
set K(xa). By solving the optimization problem for all n
possible realizations of the set K(xa) as described in The-
orem 1, and comparing the optimal values, we identify the
optimal commitment strategy xa.

Assume the support of the follower’s best response strat-
egy, when the leader employs its optimal commitment strat-
egy, is given by K. Given a specific set K(xa) = K, i.e.,
the set of battlefields in which the follower participates when
playing a best response, the leader’s optimal commitment
strategy can be determined by solving the following optimiza-
tion problem (OC).

max
xa∈Xa

ua(xa,xb) =
∑
j∈K

xaj · vaj
xaj + xbj

+
∑
j∈K

vaj (6)

s.t.
n∑

j=1

xaj = xa, (7)

xaj > 0, ∀j ∈ [n], (8)

xbj=

(xajvbj)
1
2 (xb+

∑
j′∈K

xaj′)∑
j′∈K(xaj′ · vbj′)

1
2

−xaj>0, ∀j∈K, (9)

(
vbj
xaj

)
1
2 ≤

∑
l∈K(xalvbl)

1
2

xb +
∑

l∈K xal
, ∀j /∈ K, (10)

xbj = 0, ∀j ∈ K. (11)

The leader’s utility is derived from two components: the bat-
tlefield set K, where the leader and the follower share the
battlefield proportional to their resources allocated, and the
set K, where the leader has completely won the battlefield.
Equation (7) represents the leader’s budget constraint. In-
equalities (8) assume the leader allocates a positive amount of
budget to every battlefield in the optimal commitment strat-
egy. Constraints (9) to (11) describe the follower’s best re-
sponse strategy as outlined in Lemma 1.

Next, we characterize the budget that the leader allocates
to the battlefields where the follower does not compete. This
characterization is based on interpreting the follower’s best
response strategy through a water-filling approach, but from
the leader’s perspective. Consider any battlefield j ∈ K. On
one hand, the leader must allocate sufficient budget to these
battlefields so that the follower’s marginal utility on these bat-
tlefields is lower than on other battlefields, making compe-
tition unappealing. On the other hand, the leader does not
need to allocate an excessive amount of resources to force
the follower to withdraw. Therefore, there exists a minimum
threshold of resources that the leader must allocate to these
battlefields in K, which is sufficient but not wasteful. This
threshold value is provided below.

Lemma 2. In the leader’s optimal commitment xa, we have

xaj =
vbj ·(xb+

∑
l∈K(xa) xal)

2(∑
l∈K(xa)(xalvbl)

1
2

)2 , ∀j ∈ K(xa).

We simplify the optimization problem (OC) in three as-
pects: (i) we add the expression for xaj , j ∈ K as a constraint
in (OC); (ii) we substitute xbj as outlined in (9) and (11)
into the objective function (6), thereby removing xbj from
the leader’s optimization problem; (iii) we note that the sec-
ond term of (6) can be removed, as it becomes a constant
when the set K is fixed. Denote the objective ûa(xa) =
ua(xa,xb)−

∑
j∈K vaj .

Therefore, given the set K(xa) = K, the optimization
problem (OC) can be reformulated as (OC’), as shown be-
low.

max
xa∈Xa

ûa(xa)=

∑
j∈K

(
xaj

vbj
)

1
2 vaj



∑
j∈K

(xajvbj)
1
2

xb+
∑
j∈K

xaj

 (12)

s.t. xaj =
vbj ·

(
xb +

∑
l∈K xal

)2(∑
l∈K(xal · vbl)

1
2

)2 , ∀j ∈ K, (13)

n∑
j=1

xaj = xa, (14)

xaj > 0, ∀j ∈ [n].

Solving (OC’) is still challenging, as it is not a typical con-
vex programming problem that can be solved in polynomial
time. Additionally, heuristics that approximate the optimal
solution do not help us in ultimately comparing the Stack-
elberg equilibrium with the Nash equilibria. To address this
challenge, we develop the following characterization of the
leader’s optimal commitment strategy xaj , when j ∈ K.
Lemma 3. Let xa be the leader’s optimal commitment. There
exist two parameters, α and β, such that vaj√

vbj
− α

√
vbj =

√
xajβ, for all j ∈ K(xa).
Together with (13) and (14), we can eliminate the param-

eter β in Lemma 3 by establishing an equation through the
leader’s optimal commitment strategy xa. By substituting
xaj’s into (12), we reformulate the leader’s utility as a func-
tion of the parameter α. This transforms the non-convex opti-
mization problem (OC’) into a single-variable function max-
imization problem. Note that K(xa) can be one of the sets
{{1}, {1, 2}, . . . , {1, 2, . . . , n}}. By considering one possi-
ble realization of K(xa) at a time and taking the derivative of
the objective function with respect to α, we can identify xaj’s
as below. We refer to each of these strategies xa that corre-
sponds to a set K(xa) as a candidate optimal commitment
strategy.
Theorem 2. In a Stackelberg game

G := ⟨{a, b}, [n], xa, xb, (vaj)
n
j=1, (vbj)

n
j=1⟩,

for each set K ∈ {{1}, {1, 2}, · · · , {1, 2, · · · , n}}, we can,
in O(n) steps, formulate an optimization problem involving a
univariate continuous function defined over the union of two
half-open intervals. The solution to this problem represents
the leader’s optimal commitment strategy.



Due to the complexity of the expression of the leader’s
optimal commitment, we provide its specific formula in the
proof of Theorem 2. Since the optimization objective for each
K is a univariate continuous function, this allows us to per-
form simulation experiments.

The Leader’s Optimal Commitment Strategy. Follow-
ing Theorem 2, in a Stackelberg game G := ⟨{a, b}, [n], xa,
xb, (vaj)

n
j=1, (vbj)

n
j=1⟩, we compute the candidate optimal

commitment strategy xa for each set K(xa) ∈ {{1}, {1, 2},
. . . , {1, 2, . . . , n}}. For each candidate strategy xa, we then
determine the leader’s utility. The strategy xa that yields the
highest utility is identified as the leader’s optimal commit-
ment strategy.

Recall that the best response function provided by
[Kovenock and Arjona, 2019] requires xaj > 0, for all j ∈
[n]. To conclude this section, we demonstrate that if there ex-
ists a battlefield j such that xaj = 0 in the leader’s optimal
commitment strategy, as identified through our process, then
increasing xaj to an arbitrarily small budget and carefully ad-
justing resource allocation in other battlefields will enhance
the leader’s utility. Therefore, the leader’s optimal commit-
ment strategy must satisfy this prerequisite.
Lemma 4. In the leader’s optimal commitment xa, for ∀j ∈
[n], xaj > 0.

5 Stackelberg vs. Nash
In this section, we investigate the necessary and sufficient
conditions under which the Stackelberg equilibrium coincides
with the Nash equilibria.

Let’s define vaj

vbj
as the relative value ratio of the two play-

ers over battlefield j. Our first observation is that the relative
value ratio can only have two distinct values if a Stackelberg
equilibrium is also a Nash equilibrium.
Lemma 5. Let xa be the leader’s optimal commitment strat-
egy and xb be the follower’s best response to xa. If xa is also
the best response strategy to xb, then the cardinality of the set
{ vaj

vbj
, ∀j ∈ [n]} is at most two.

To prove this lemma, we apply Lemma 1 twice, since xa

and xb are best response strategies to each other. Together
with Lemma 3, we can establish a quadratic equation whose
single variable is vaj

vbj
, ∀j ∈ [n]. Since a quadratic equation

can have at most two distinct roots, the lemma is proved.
Lemma 5 allows us to merge battlefields with identical rel-

ative value ratios. This step is essential for proving the main
result of this section, as detailed below.
Theorem 3. There exists a function f : R4 → R such that
a Stackelberg equilibrium is also a Nash equilibrium if and
only if one of the following conditions hold:

• The relative value ratio is consistent across all bat-
tlefields. That is, there exists a constant c such that
vaj

vbj
= c, for ∀j ∈ [n].

• There exists a set M ⊊ [n] and its complement
M such that (1) vaj

vbj
= vak

vbk
for ∀j, k ∈ M ,

and vaj

vbj
= vak

vbk
for ∀j, k ∈ M , and (2) xa

xb
=

f
(∑

j∈M vaj ,
∑

j∈M vbj ,
∑

j∈M vaj ,
∑

j∈M vbj

)
.

Figure 1: Utility Curves in Two Equilibria.

The function f in Theorem 3 is complicated, so we pro-
vide its specific expression in the proof. To reinforce the un-
derstanding of Theorem 3, particularly the second case, we
construct a class of instances and demonstrate how the util-
ities of both players vary across the two equilibria as their
relative budgets change, as shown in Figure 1.

Let the budgets of the two players be r and 1, respec-
tively, with their relative budget ratio defined as r = xa

xb
. Let

va1 = 1, va2 = 5, vb1 = 1, and vb2 = 0.5. Clearly, this
game satisfies the second case of Theorem 3. In Figure 1,
SEua and SEub represent the utilities of players a and b in
the Stackelberg equilibrium, while NEua and NEub denote
their utilities in the Nash equilibrium. As r changes, the utili-
ties of the two players in both equilibria also change. Notably,
there exists a value of r such that r = xa

xb
= f(1, 1, 5, 0.5), at

which both players achieve the same utility in both equilibria.
Furthermore, several interesting observations emerge from

these instances. When xa

xb
> f , both players experience

higher utilities in the Stackelberg equilibrium than in the
Nash equilibrium. In other words, an increase in the leader’s
utility does not necessarily reduce the follower’s utility.
Specifically, the leader’s optimal commitment in the Stackel-
berg equilibrium allocates more resources to the higher-value
battlefield (Battlefield 2) and fewer resources to the lower-
value battlefield (Battlefield 1) compared to the Nash equilib-
rium. Since the follower values the battlefields in the opposite
way, they prefer Battlefield 1. This allows the follower to de-
rive more utility from Battlefield 1, leading to an increase in
their utility under the Stackelberg equilibrium. Conversely,
when the leader’s budget is relatively small (i.e., when the ra-
tio is less than f ), the situation reverses. This is illustrated by
the following calculation:

• If xa

xb
= 0.5, which is less than f , the unique Nash equi-

librium is x∗
a = (0.025, 0.475), x∗

b = (0.340, 0.660),
where NEua = 2.161, NEub = 1.223. The Stack-
elberg equilibrium is xa = (0.136, 0.364), xb =
(0.559, 0.441), where SEua = 2.458, SEub = 1.079.

• If xa

xb
= 2, which is greater than f , the unique Nash equi-



librium is x∗
a = (0.667, 1.333), x∗

b = (0.833, 0.167),
where NEua = 4.889, NEub = 0.611. The Stack-
elberg equilibrium is xa = (0.543, 1.457), xb =
(0.847, 0.153), where SEua = 4.915, SEub = 0.657.

6 Leader’s Advantage
In this section, we analyze the advantages of the leader as
a first mover, with these advantages being contingent upon
the leader’s budget relative to that of the follower. Specifi-
cally, we consider three cases: (1) the number of battlefields
n > 2, we find that when the leader’s budget is relatively
large, the advantages of the leader is marginal; (2) n = 2,
we provide an upper bound and a lower bound on the ratio of
the leader’s utility under the Stackelberg equilibrium to that
under the Nash equilibrium; and (3) n = 2 and the leader’s
budget is relatively small, we find that the advantages of the
leader could be infinite.

There are n > 2 battlefields. The following theorem
gives a lower bound for the leader’s utility in Nash equilib-
ria.
Theorem 4. For any game

G := ⟨{a, b}, [n], xa, xb, (vaj)
n
j=1, (vbj)

n
j=1⟩,

the leader’s utility in the Nash equilibrium is greater than or
equal to xa

xa+xb
· (
∑n

j=1 vaj).

Proof. Let (x∗
a,x

∗
b) denote the Nash equilibrium. Consider

a leader’s strategy x̂aj = xa

xb
x∗
bj , we have ua(x

∗
a,x

∗
b) ≥

ua(x̂a,x
∗
b). Furthermore, we have

ua(x̂a,x
∗
b) =

n∑
j=1

xa

xb
x∗
bj

xa

xb
x∗
bj + x∗

bj

· vaj =
xa

xa + xb

n∑
j=1

vaj .

It shows that the utility of the leader in the Nash equilibrium
is greater than or equal to xa

xa+xb
· (
∑n

j=1 vaj).

By Theorem 4, we have the following corollary.
Corollary 1. Let uNE

a and uSE
a denote the leader’s utility

under the Nash equilibrium and Stackelberg equilibrium, re-
spectively. We have uSE

a

uNE
a

≤ xa+xb

xa
.

Proof. Let (x̃a, x̃b) denote the Stackelberg equilibrium, then
by Theorem 4, we have

xa

xa + xb

n∑
j=1

vaj ≤ ua(x
∗
a,x

∗
b) ≤ ua(x̃a, x̃b) <

n∑
j=1

vaj .

Rearranging the inequality yields ua(x̃a,x̃b)
ua(x∗

a,x
∗
b )

≤ xa+xb

xa
.

This corollary shows that when xa is relatively large,
ua(x̃a,x̃b)
ua(x∗

a,x
∗
b )

approaches 1. Hence, when the leader’s budget
is relatively large, the leader can make a commitment to en-
hance its own benefits, but the improvement is marginal.

There are two battlefields. We consider a game with two
battlefields. Analyzing two-battlefield scenario can provide
insights into the leader’s advantages in games with multi-
ple battlefields. Let G̃ := ⟨{a, b}, {1, 2}, xa, 1, (va1, 1), (vb1,

1)⟩. Without loss of generality, let va1 ≤ vb1. For the game G̃,
[Li and Zheng, 2022] present an approach to compute Nash
equilibria. We can utilize this approach to compute Nash
equilibria. The following theorem gives the range of the ratio.

Theorem 5. In game G̃, let x̂a denote the leader’s opti-
mal commitment, x̂b denote the follower’s best response,
and uNE

a denote the leader’s utility in the Nash equilibrium.
Then, the ratio of Player a’s utility in the Stackelberg equilib-
rium to its utility in the Nash equilibrium is bounded by

va1 + 1

va1 +
vb1(xa+1)
vb1xa+va1

≤ ua(x̂a, x̂b)

uNE
a

≤ va1 + 1
xav2

a1

xava1+vb1
+ xa

xa+1

.

There are two battlefields and the leader’s budget is rel-
atively small. By Theorem 5, we can derive the following
corollary, which describes the leader’s advantage when the
leader’s budget is relatively small.

Corollary 2. In game G̃, the ratio of the leader’s utility when
moving first to its utility in the Nash equilibrium approaches
infinity.

To illustrate this corollary, we consider an extreme case
G̃ := ⟨{a, b}, {1, 2}, ϵ, 1, (ϵ, 1), (o(ϵ), 1)⟩. We observe when
the leader’s budget is dominated by the follower’s budget, and
the follower’s value on the first battlefield is negligible com-
pared to the leader’s value on the first battlefield, the ratio of
the leader’s utility when moving first to its utility in the Nash
equilibrium approaches infinity.

Although this corollary focuses on two battlefields, using
the reduction method presented in Section 3, we can extend
the analysis to multiple battlefields. Therefore, this corollary
holds for scenarios with more than two battlefields as well.

7 Conclusion and Future Work
We explore the advantages of the first mover in the Lottery
Colonel Blotto game. To address this, we reduce the num-
ber of supports in the follower’s best response strategies from
2n − 1 to n. We derive a method to calculate the leader’s
commitment for each possible support, allowing selection of
the optimal one from these n potential commitments. In ad-
dition, we provide the necessary and sufficient conditions un-
der which the Stackelberg equilibrium and Nash equilibrium
are equivalent. We find that the two equilibria are equivalent
when the budget ratio between the leader and the follower
is exactly equal to a certain functional value, which depends
on the ratio of the valuations of the battlefields by the leader
and the follower. Furthermore, we analyze the ratio of the
leader’s utility under the Stackelberg equilibrium to that un-
der the Nash equilibrium.

This work opens several directions for further research.
First, analyzing the ratio between the follower’s utility un-
der Stackelberg and Nash equilibria may yield deeper under-
standing of the incentives and trade-offs involved. Second, it
is of interest to study which player benefits more from com-
mitting early, and under what conditions a player prefers to
act as the leader or the follower. Finally, extending the model
to settings with multiple followers introduces new layers of
strategic complexity, where the interaction among followers
becomes both theoretically rich and analytically challenging.
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