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Abstract

Audit games are an important variant of the Stackelberg se-
curity game, a widely studied game-theoretic model over the
past years. It has been acknowledged that a pre-audit phase
can notably enhance the audit’s efficiency by informing and
directing the following audit procedures.

In this paper, we model the above process with a two-stage
audit game. The game encompasses two stages: an investiga-
tion stage where the auditor gathers information about poten-
tial policy breaches, and an audit stage where the auditor al-
locates the audit resources based on the investigation results.
We formulate the problem as a set of mathematical programs.
Due to the non-convexity of the programs, we consider a re-
stricted strategy space and show that the optimal strategy in
the restricted space can be determined by solving a polyno-
mial number of convex optimization problems. Finally, we
conduct extensive experiments to evaluate the effect of intro-
ducing the initial investigation stage and our algorithm. Our
experiments show that even a small budget for the initial in-
vestigations can significantly enhance the defender’s utility.

Introduction

As a standard theoretical tool in enhancing public security,
the Stackelberg security game (SSG) has attracted much re-
search attention in recent years. The applications of the SSG
have spread across various domains that are crucial to global
development and human well-being (Pita et al. 2008; Tsai
et al. 2009; Jain et al. 2010). Besides urban crime preven-
tion, wildlife protection, and cybersecurity, audit games are
another important application of the SSG that draws inspi-
ration from the audit process. Audit mechanisms are com-
mon in modern organizations (e.g., hospitals, tech compa-
nies, and financial institutions) to help them detect policy
violations (e.g., unauthorized access to sensitive data).

A standard audit game features two players: an auditor
and an auditee. Existing work on audit games mainly fol-
lows the framework of the standard SSG, where the auditor
announces the audit strategy first and then the auditee re-
sponds by choosing a target to attack. Following the litera-
ture convention, we call the auditor the “defender” and the
auditee the “attacker”.
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However, such a framework may not be able to fully
leverage the defender’s leadership advantage as the audit re-
sources are usually limited. To circumvent this limitation,
we introduce an initial investigation stage for the defender,
transforming their strategy into a two-stage process. The de-
fender can make use of the first investigation stage to collect
“clues” about the attacker’s target choice, and then allocate
audit resources to the targets in the subsequent stage based
on the observed clues.

The initial stage of the investigation draws inspiration
from the concept of a “pre-audit”. Pre-audits are a widely
used and essential component in various auditing processes.
Their primary purpose is to identify potential issues early
on and to ensure that financial records and internal con-
trols are in place (Hatfield, Jackson, and Vandervelde 2011;
Loebbecke and Steinbart 1987). Pre-audits usually include
a review of financial statements, examination of documen-
tation, interviewing key employees, and identifying unusual
adjustments in budget allocations, allowing auditors to gain
a preliminary understanding of the auditee and thereby iden-
tify early issues.

The investigation stage has been confirmed by numerous
researches to be helpful in guiding the audit direction (Furn-
ham and Gunter 2015; Houck 2003; Singleton and Single-
ton 2010). Intuitively, the clues collected in the investigation
stage reveal information about the attacker’s choice, thereby
enhancing the utilization efficiency of audit resources and
improving the overall protection level.

In this paper, we propose a two-stage audit game. The
defender’s strategy has two components: the investigation
strategy and the audit strategy. In the first stage, the defender
allocates investigation resources to collect clues about the
attacker’s target. In the second stage, the defender allocates
audit resources to each target to formally audit the targets.
The defender’s audit resource allocation is based on the
clues observed in the investigation stage to take advantage
of the information. Our model allows probabilistic observa-
tions of the clues, and takes into account both “false alarms”
(false positives or type I errors) and “missed detections”
(false negatives or type II errors).

Since each target may have its own clue observations,
the total number of clue combinations can be exponential.
This leads to exponentially many audit strategies, as the au-
dit strategy depends on the observed clues in the first stage,



making the problem intractable. To address this problem, we
focus on a simplified defense strategy, which we call the
independent defense strategy. We analyze the structure of
the optimal independent defense strategy and prove that the
minimum budget consumption in the second stage decreases
monotonically with respect to the minimum utility the at-
tacker can obtain. Based on this property, we propose a fast
algorithm for the optimal independent defense strategy us-
ing binary search. In each iteration, we only need to solve a
second-order cone program, which is a convex optimization
problem and can be efficiently solved.

We also conduct extensive experiments to evaluate the ef-
fectiveness of our new game framework. Our experiments
demonstrate that the additional investigation stage can sig-
nificantly enhance the defender’s utility with only small re-
source investments. Our results also provide a useful guide-
line for the defenders in general security games who are ca-
pable of performing simple initial investigations.

Related Work

Stackelberg security games and audit games. Stackel-
berg security games have been widely studied in computer
science (Conitzer and Sandholm 2006; Kiekintveld et al.
2009). Since its inception, security games have found many
practical applications in real life (Pita et al. 2008; Jain et al.
2010). To the best of our knowledge, Fellingham and New-
man (1985) was the first to model the audit problem in
a game-theoretic framework. On top of that, Blocki et al.
(2013, 2015) applied the SSG model to auditing scenarios
and proposed the concept of audit games. They introduced
an additional penalty term to model the attacker’s punish-
ment when the attack was caught by the defender. Different
from their model, we add a pre-audit phase and consider the
defender’s overall strategy in both the pre-audit and formal
audit phases.

Multi-stage security games. Our work is also related to
the literature on multi-stage security games. As solely re-
lying on the SSG strategy is insufficient for the defender
in many scenarios (Xu et al. 2015), some previous work
adds additional stages to the defender’s strategy. One ap-
proach to exploit the game structures by adding stages to
the defender’s strategy is through information design. The
defender can send signals to the attacker, thereby inducing
the attacker to change actions (e.g., (Bondi et al. 2018, 2020;
Guo et al. 2017; Xu et al. 2015)).

Information asymmetry in security games. Enhancing
the defender’s information collection channel is another ap-
proach that is technically relevant to our work. Recently,
there is a line of work that focuses on acquiring information
through informants, who will provide information about the
attacker’s action (Huang et al. 2020; Shen et al. 2020, 2024).
Similar ideas include introducing alarm systems, drones,
and mobile sensors to monitor the attacker’s action (Bondi
et al. 2018; Ma et al. 2018; Shi et al. 2020; Xu et al. 2018;
Zhang et al. 2019), whereas we directly model the defender’s
information-gathering behavior as part of their strategy.

Preliminaries

We consider an audit game setting with two players: the de-
fender (the auditor) and the attacker (the auditee). The de-
fender has only limited resources and wants to protect n dif-
ferent targets, while the attacker wants to attack them. We
formulate the problem as a Stackelberg security game.

In the standard security game, the defender first commits
to a strategy that allocates the resources to the targets in a
randomized way. Knowing the defender’s strategy, the at-
tacker then chooses a target to attack. Different from the
standard version, we consider a setting where the defender
performs an initial investigation (e.g., interviewing key em-
ployees or checking financial documents) to collect “clues”
about potential policy violations. We model the audit pro-
cess with two stages, where the two stages require different
defensive resources. In the first stage, the defender allocates
investigation resources to perform initial investigations. In
the second stage, based on the results of the investigation,
the defender uses audit resources to audit the targets.

Let [n] = {1,2,...,n} be the set of all targets. For any
target i € [n], let ¢} be the cost of performing an initial
investigation on the target in the first stage and ¢? the cost
of auditing the target in the second stage. Denote the de-
fender’s strategy by s = (z,y), where =,y € [0,1]™ are
n-dimensional vectors with each element being the proba-
bility of investigating or auditing the corresponding target in
stage 1 and 2, respectively.

Let o € {0,1}" be a binary vector, where o; indicates
whether a clue is found on target ¢ in the investigation stage.
Since the auditing strategy in stage 2 may depend on the
investigation results in stage 1, the strategy y of stage 2 is
actually a function of o.

Formally, we define the game as follows:

Definition 1 (Audit Game with Initial Investigations). The
audit game with initial investigations proceeds as follows:

* The defender announces their strategy s = (x,y);

* Based on the defender’s strategy s, the attacker chooses
a target to attack;

* The defender allocates resources according to x to per-
form initial investigations and obtains observation o;

* Based on the observation o, the defender uses strategy
y(0) to audit the targets.

If the defender audits a target ¢ attacked by the attacker,
the attacker gets a penalty P while the defender gets a re-
ward R¢. Similarly, if the attacked target is not audited by
the defender, the attacker gets a reward R, and the defender
gets a penalty PZ. We make the standard assumption that
both the defender’s and the attacker’s rewards are always
larger than their corresponding penalties, i.e., R¢ > PZ and
R¢ > P7 for all 4.

An initial investigation may not accurately reveal whether
an attack happens or not, so we view o; as a random variable
and assume that o; and o; are independent, no matter which
target is attacked. We define the probability of getting a clue
on an investigated target as follows:

p¢ = Pr{o; = 1| the investigated target i is attacked},
pi = Pr{o; = 1| the investigated target i is not attacked}.



Here, we assume that p§ > pj' for all target .

Suppose that target ¢ is attacked. Clearly, for any target i,
the result of the investigation in stage 1 gives an observation
with o; = 1 only if the defender allocates resources to inves-
tigate target ¢ in stage 1 and gets a clue. Thus the probability
of a positive observation for target ¢ is:

Pr{o,= 1|t} = wpl =1
! z;p;y otherwise

The probability of having o; = 0is then 1 — Pr{o; =1 | t},
and the probability of vector o is:

Pr{o|t}::IIIH{0i|t}

Therefore, if target ¢ is attacked by the attacker, the utili-
ties of the defender and the attacker are:

uq(s,t) = Z [yt (0) R + (1 — y:(0)) P/ HPr{oi | t},

o

ua(s,t) = Y [y (0) P + (1 = ye(0)) Ry] [ [ Pr{os | ¢}
i=1

o

Similar to the standard SSG, the defender has only a lim-
ited amount of resources, which is usually much less than
the total cost of auditing all the targets. Let B; and Bs de-
note the total amount of investigation resources and audit
resources, respectively. Thus, the defender’s strategy (z,y)
has to satisfy the following budget constraints:

n
> clzi < By,
=1

Z H Pr{o; | t} Zc?yi(o) < By, Vt € [n].
€] i=1

o 7

The standard solution concept for a two-player Stackel-
berg game is strong Stackelberg equilibrium (SSE). In our
model, we also adopt such a solution concept and assume
that after observing the defender’s strategy s, the attacker
chooses a best target ¢, breaking ties in favor of the defender.
Le., given any defender’s strategy s, the attacker’s strategy
t(s) satisfies the following:

uq (s, t(s)) > uq(s,t"),Vt' € [n], (1)
uq(s,t(s)) > uq(s, t'),vt' € arg maxu,(s,t). (2)
t

Definition 2 (Strong Stackelberg Equilibrium (SSE)). A

strategy profile (s, t) is a strong Stackelberg equilibrium if it

satisfies the following:

1. The attacker plays a best-response against the defender
strategy s (Equation (1));

2. The attacker breaks ties in favor of the defender (Equa-
tion (2));

3. Strategy s is optimal for the defender:

uq(s,t(s)) > uq(s’,t(s)).

To find the optimal strategy for the defender, we fol-
low (Conitzer and Sandholm 2006) and solve the following
mathematical program for each target ¢, and then choose the
best solution among them:

max  ug(s,t)

st ug(s,t) > ug(s,t) vt

n
g ciz; < By,
i=1

> > wilo)e [T Prios | 1) < Bs,

o =1

3)

0<a <1 Vi,
0 < yi(o) < 1 v’i,VO

Theoretical Analysis

The programs presented above have both a non-convex
objective function and non-convex constraints. Also, the
second-stage solution y(o) depends on the clues gathered
in the first stage, which can have 2" different possibilities.
Therefore, even representing y(o) takes exponential space.
In this section, we analyze the problem and derive struc-
tural results about the solution to the problem. The follow-
ing result shows that we can, without loss of generality, fo-
cus on solutions where y; only depends on o; and o, i.e.,
yi(0) = yi(0;, 01).

Lemma 1. There exists an optimal solution with y; being a
function of only o; and oy, for any i # t, and y; a function
of only oy, where t is the chosen target of the attacker under
the solution.

Proof. We prove the statement by showing that, for any opti-
mal solution s* = (z*,y*), we can construct a new solution
that satisfies the condition in the statement of the lemma and
achieves the same utility as s*. Let ¢ be the target chosen
by the attacker under solution s*. Construct another solution
s’ = (2',y') as follows:

/ *

x; =z, Vie{n},

Eo_,[y; (01, 0-¢)] ifi=t,
Eo_ ., [yi(0i,00,0_(;1))] otherwise.

oo = {

Note that, as the defender’s observation on each target is in-
dependent, no matter which target is attacked, we have

E [yi(o)|i]= E [y(o)|t]Vi#t.

O—(i,t) O—(i,0)
According to the construction of s’, it is straightforward that
0<uz,<1,0<yi(0;,01) <1Vi € [n],Vo;, 0.
And

Ely; (0)] = E [y;(0i, 01)]. 4)

o Oi,t



With Equation (4), one can easily check that the new strat-
egy s’ achieves the same defender utility:

uq(s*,t)

=3 [y ()R} + (1 = y; (0)) P] ﬁPr{oi |t}
=I§O[y2*(0)Rf + (L= y; (o) Pl t] B

=E [P +yi (0)(R{ — P") | 1] ©)
=E [P [ t] + (R = P)E[y; (0r) | 1]

=P+ (B] = P) Ely;(o1) | 1
=uq(s’,t).

Similarly, the new strategy also gives the same utility to the
attacker:
ua(s”, i) = Rf — (R} — P}') B [yi(0i,04) | 1]
04t

=u,(s',i) Vi,

Q)

Furthermore, the new strategy satisfies the budget constraint:

n n
Zc}x;:Zc}ﬁSBl,
ZC IE y’L O’Laot |t ZC ]Eyz

Equation (5) - (7) shows that the defender’s utility, the at-
tacker’s utility, and the budget consumption with s’ are all
the same as those with s*, respectively, which indicates that
s’ satisfies the constraints while yielding the same value as
the optimal solution s*. Namely, we can construct an op-
timal solution where y; is a function of o; and o; via the
method presented above. O

)| t] < By (T)

Although the original strategy space is too large to handle,
Lemma 1 indicates that we can only consider a much smaller
sub-space without sacrificing the solution quality. This result
significantly simplifies the representation of the optimal so-
lution. From now on, we will only consider solutions where
yi = yi(0i,0¢) and y; = y¢(ot). With Lemma 1, the program
can be simplified as follows:

max (s, t)
st wug(s,t) > ug(s,t) vt

ciz; < By,

I

«
Il
-

®)

3

¢ E [y;(0i,0¢) | t] < B,

=
0<z <1 Vi,
0<y (Oz‘,Ot) <1 Vi, Yo; 04

Independent Defense Strategy

According to Lemma 1, in the optimal strategy, y; may de-
pend on both o; and o;. However, bilinear terms still ap-
pear in the first and third constraints of Program (8), mak-
ing the problem non-convex. Thus, we consider an alterna-
tive, simplified audit strategy y; for the defender, with y;
being a function of only o, i.e., y; = y;(0;). Such a simpli-
fication makes y; independent of the observations of other
targets, hence called independent defense strategy. This not
only simplifies the computation but also makes the imple-
mentation much easier.

With such a restriction on the strategy space, Program (8)
becomes the following:

rgrcl,a;;( uq(s,t)

st ug(s,t) > ua(s,t) vt',
n
ZC}% < By,

ZC yz 01 |t]<B27

0 g z; <1 Vi,

€))

Denote the above program by P(t). We still assume that the
attacker breaks ties in favor of the defender when the at-
tacker is indifferent among multiple targets that lead to the
same maximum utility, as the defender still can slightly per-
turb the strategy to enforce such an outcome.

We first consider the following lemma, which will be use-
ful for designing our algorithm.

Lemma 2. There exists an optimal solution to P(t) where
the attacker’s utility u, (i) = min{ R?, u,(t)}, where t is the
target chosen by the attacker in the solution.

This result is straightforward and also holds in the stan-
dard Stackelberg security setting. So we omit its proof here.

Recall that the observation o; is a binary random variable
indicating whether a clue is discovered in the first stage. In-
tuitively, if the defender observes a clue (0; = 1), target ¢ is
more likely to be attacked as p§ > p;'. Therefore, a natural
ideais to set y; = 1 whenever o; = 1. This idea is confirmed
theoretically by our next result. For ease of representation,
we slightly abuse notation and write

yi(1) =yi(oi =1) and  y;(0) = yi(o; = 0)

to denote the defender’s strategy in the second stage under
different observations from the first stage, respectively. We
also denote by d; the expected probability of auditing target
1 in the second stage conditioned on target : being attacked,
that is,

di = Elyi(0) | i] = zipfy: (1)

Lemma 3. It is without loss of generality to assume that the
defender will audit target © with probability 1 once a clue is
observed on i in the first stage. In other words, there is an
optimal solution to P(t) where y;(1) = 1 for all .

+ (1 —zpf)yi(0).  (10)



Note that Program P(t) still involves non-convex con-
straints. To solve the program, we introduce a parameter m
and consider the following program Q(¢; m):

p@ —pu
gllﬂ i + ; ( 0 ’ayz'(o))

D
s.t. uu(t) =m,
uq (i) <m Vi,

n
> clz; < By,
=1

0<az; <1 Vi
0<5(0)<1 Vi

The above program fixes the attacker’s best possible util-
ity to m and minimizes the budget of the second stage that
can enforce such a utility. We fix y;(1) to 1 in the objective
function according to Lemma 3 and minimize the second-
stage budget consumption by optimizing 2 and y(0). The
constraints serve multiple purposes: they ensure that attack-
ing target ¢ is the attacker’s best response, keep the first stage
resource consumption within the investigation budget con-
straint By, and specify the feasible ranges of « and y;(0).

Definition 3 (The Minimum Attacker Utility). The mini-
mum attacker utility m*(t) is the smallest attacker’s utility
on target t achievable by a feasible solution in P(t).

(11)

Theorem 1. Any optimal solution to Program Q(t;m*(t))
is also an optimal solution to Program P(t).

Proof. According to Definition 3, P(t) has a feasible so-
Iution, denoted by s which leads to the attacker’s utility
uq(s,t) = m*(t) and satisfies the second budget constraint.
We first show that s is feasible for Program Q(t;m*(¢)).
It is clear that the two programs share all constraints ex-
cept that P(t) includes an additional audit budget constraint.
Therefore, it is quite intuitive that s is a feasible solution for
Q(t;m*(c)) as it is feasible for P(t).

Let s* denote any optimal solution of Q(¢t, m*(t)). The
optimality of s* in Program Q(¢; m*(t)) leads to the follow-
ing inequality:

2,13 ( il <o>)
it z pl
< C%dt+z (

i#£t

The second inequality holds since s is feasible for P(t) and
thus satisfies its budget constraint. Again, since P(t) and
Q(t;m*(t)) share all the constraints except for the audit
budget constraint By, s* is clearly feasible for P(t).

We prove that it is also optimal for Program P(t) by
contradiction. Assume that s* is not optimal for P(¢) and
denote the optimal solution to P(t) by s’. It follows that
ug(s’,t) > uq(s*,t). By definition, we know that

ua(s,t) = P + (R} — P)dy,
uq(s,t) = Ry + (P{ — RY)d;.

pi
am0>§B-
p (0) 2

On target ¢, the attacker’s utility satisfies m’ = u,(s,t) <
uq(s*,t) = m™*(t). In other words, there is an attacker’s util-
ity m’ < m*(t) on target ¢, which is achievable by a feasible
solution to Program P(t). This contradicts the definition of
m™*(t). Therefore, the contradiction proves that s* is also op-
timal for Program P(t). O

Theorem 1 offers us an alternative plan for optimizing
Program P(t). By solving Q(t;m*(t)), we can obtain a
solution that is optimal for both Q(¢t;m*(¢t)) and P(t). A
natural idea is to find the minimum attacker utility m*(¢)
and solve for the optimal solution of P(t) by optimizing
Q(t; m*(t)). Before presenting our optimization algorithm,
we first prove the following useful results.

Lemma 4. For any m, there is an optimal solution s to
Q(t;m), where the attacker’s utility is
Uq(8,4) = min{ R}, m},Vi.

According to Lemma 4, we can, without loss of
generality, focus only on solutions with wu,(s,i) =
min{R?, m}, Vi. For any such solution, when m is given,
the expected probability of covering each attacked target be-
comes a constant:

d— R“ "fl ifR?>m.
0 if R <m
And the relationship between y;(0) and z; and be derived
from Equation (10):
;(0) = .
yi(0) = 7 — "

Lemma 5. For any m, there is an optimal solution to Pro-
gram Q(t; m) where x; = 0.

Proof. Let s* be an optimal solution to Q(¢; m). Consider

solution s where
e . e
w= {0 Mot w0 {80
i ifi#£t y;(0) ifi#t

in which the defender allocates no resources to investigate
target t. We prove by showing that s is also an optimal so-
Iution. Note that the only difference between s and s* lies
in the strategy on target ¢. As the players’ utilities are inde-
pendent on each target, solely letting x; = 0 in any strat-
egy will not change their utilities on target ¢ # ¢. Since
di = zpf + (1 — xpf)y:(0) = df, s results in the same
attacker utility c on target ¢.

Now we check the budget constraints. Intuitively, the total
cost of the first step is reduced by changing from s* to s as
the z; = 0 < zj. In the second step, the total cost is

Gl + (1= zpf)ye(0)]
+ ) Gl + (1= zip})yi(0)]
it
=c2d; + Zc x;ps +
i#£t
=cilzipf + (1 — a7pf)]

+ZC xpz 1_xpz)yz(0a0)]7
i#t

(1 —27pi)y; (0,0)]



which is still optimal. Therefore, s is an optimal solution
with z; = 0. O

Remark 1. Lemma 5 implies that the defender will adopt
different investigation strategies on different targets. When
the defender believes that target t will be attacked, there is
simply no need to investigate before auditing. Yet on the tar-
gets that will not be attacked from their perspective, the de-
fender needs to employ the initial investigation to reduce the
budget expenditure on them. Another way of understanding
the costs on these targets is that, once the defender has allo-
cated enough resources to cover other targets, the attacker’s
best choice is already t regardless of whether the defender
investigates t in the first stage.

Lemma 6. The optimal value of Program Q(t;m) is a
monotone decreasing function of m.

Now we show that when m is given, Q(¢;m) can be re-
formulated as a convex optimization problem. We eliminate
variable y;(0) and represent it by z; according to Equa-
tion (12). We introduce u; to represent ﬁ and v; to

represent 1 — x,;p?. We also use @ = (a1,q2,...,q5),
8 = (b1, B2, ..., Bn) to represent the vector of «; and f3;.
We reformulate Program Q(¢; m) as the following Q(¢; m):

o | DY p; —pi
min ¢ —di + +— 1—(1—dl)o<,-}
o, Bw, @ ; 1{1?? ' o8 : o

+ Cfdt
n
s.t. Zcila:i < By,
i=1

ﬂi =1- xlp? V/L7
w =1,

Oéiﬁi = ’LU2 Vi,

0<u; < min{l, d;} Vi,
p;
ai76i20 Vi
(13)

Notice that given m, d; becomes a constant for each i. In

Q(t; m), the objective function and all constraints are linear
except for the fourth constraint, which is a rotated second-
order cone constraint. Therefore, Q(¢;m) is a convex opti-
mization problem.

Lemma 6 indicates that for any feasible Program Q(¢; m)
with parameter m > m*(t), its optimal value will not ex-
ceed the total cost of the second stage under P(t). Hence,
its optimal solution is feasible for P(¢). According to Defi-
nition 3, for any m < m*(t), the solution to Q(¢; m) is in-
feasible for P(t). Therefore, we can use binary search to find
m*(t) with a feasible corresponding Program Q(¢; m), and
according to Theorem 1, any optimal solution to Q (¢; m*(t))
is also an optimal solution to P(¢). In each iteration of the
binary search, the algorithm solves Program Q) (¢; m), which
is a convex program and can be solved efficiently. The de-
tails are shown in Algorithm 1.

Algorithm 1: Finding the optimal independent de-
fender strategy

Input : Payoffs { R?, P4, R®, P}, budget B, costs
{c!, ¢}, alarm probabilities {p®, p“},
precision e.

Output: Solution s.

1 um.ar <; 7007
2 fort =1tondo

3 Initialize ™m0y <= P, mpign < RY;

4 if Q(t; mpign) is infeasible then

5 L continue;

6 while Mhigh — Miow > € do

7 if Q(¢; ™t Mew ) s infeasible then

Mhigh —Mlow .

8 ‘ Miow gf’

9 else

10 L mhigh — mh'igh.;mluw;

Muigh—RE) (R —Pf d.

1 ud<—( ngi)R(egt f)+P,

12 if ug > Upmq. then

13 Umazx — Ud;

14 Set s to be the solution to Q(t; Maigh);
15 return s;

Experiments

We report our experiment results in this section. The re-
sults are averaged over 100 game instances. Following stan-
dard practice, player rewards and penalties are drawn from
U[0,1] and U[—1, 0], respectively. Audit costs c7 and inves-
tigation true positive rates p¢ are sampled from U0, 1]. Let
k; and [; represent the ratios of ¢} to ¢7 and p¥ to p¢, respec-
tively, i.e.,

1 U
ki=t and [ =2L.
G Py
For ease of presentation, let k& = {ki,ko,... kn}, | =

{li,la, ..., 1}

We use the canonical SSG without the investigation phase
as the baseline. Both models share identical audit resources
and marginal audit costs. To solve for the optimal SSG solu-
tion, the following linear program is applied to each target ¢,
where vector z represents the defender’s strategy, and each
element z; indicates the probability of covering target :.

max ug(t) = 2RI + (1 — z) P
s.t. ZtPta + (1 — Zt)R? > Zt/P(f + (1 — Zt/)R?/ Vt’,

n
E c?z; < B,
i=1

0<%z <1 Vi
(14
In the experiment results presented in this section, all pro-
grams are solved using Gurobi 11.0 (Gurobi Optimization,
LLC 2023).



Effect of Price Ratio and Investigation Accuracy

Figure 1 shows the results when all the targets share the same
k and [. The number of targets is 50 in all the game instances
for this experiment. We set Bo = 5. Additionally, in the
two-stage model, the defender has investigation resources
of B; = 0.1. For each budget By, we compute the corre-
sponding utilities for both the defender and the attacker with
k €{0.1,0.2,...,0.5} and | € {0.1,0.2,...,0.5}. Differ-
ent curves on each subgraph represent the utility of the de-
fender (attacker) with different [. The black dashed line rep-
resents the payoff in a standard Stackelberg security game
without the investigation phase. The result implies that with
high cost-effectiveness, the investigation phase can provide
a significant utility boost to the defender.
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Figure 1: The defender and attacker’s utilities with different
budgets, price ratios, and investigation accuracy.

Effect of Initial Investigation

In this experiment, we analyze the effect of the resources
invested in the first stage on the defender’s utility. In the ex-
periment, k and [ are both randomly drawn from U|0, 1].
We set By € {1,3} and n € {30,40,50}. We compare the
improvement in defensive effectiveness provided by initial
investigations with By € {0.05,0.1...,0.5} under differ-
ent numbers of targets and audit resources. Figure 2 shows
that that when audit resources are limited, investing a small
amount of resources in the initial investigation phase can sig-
nificantly enhance defensive effectiveness. The defender’s
utility increases with the consumption of resources in the
first phase. Therefore, allocating resources to the initial in-
vestigation is highly cost-effective, providing a decent im-
provement in protection at a relatively low cost.

Bl 036 B =3

D0
2012 2 n =30
= = 0.32 _
20.10 50 n =40
w vy p =
y 20.28 n =50
8 0.08 5
= =]
8 - 5 0.24
£ 0.06 &
= 004 = 0.20

0.1 0.2 0.3 04 0.5 0.1 0.2 0.3 0.4 0.5
B B,

Figure 2: The defender’s utility with different investigation
resources. Different curves represent different targets in the
game.

The Resource-Saving Effect of Initial Investigation

Beyond improving defender’s utility, the introduction of the
first-stage investigation can also reduce the amount of de-
fensive resources required, thereby enhancing resource effi-
ciency. To evaluate this effect, we fix the defender’s second-
stage budget at 1 and vary the investigation budget B in
the first stage. We compare this setting with a standard SSG
that uses the same total amount of defensive resources. The
experimental results illustrate how much defensive resource
a standard SSG must expend in order to achieve the same
level of defensive performance as the independent defense
strategy.

In this experiment, the parameter k is randomly sam-
pled from UJ0,1]. We compare different values of | €
{0.1,0.2,0.3,0.4,0.5} and first-stage budget levels By €
{0.01,0.02,0.03,0.04,0.05}, and measure how much de-
fensive resource a standard SSG must consume to achieve
the same defensive performance as an independent defense
strategy.

The experimental results indicate that the introduction
of an initial investigation phase significantly reduces the
amount of defensive resources required. Moreover, for all
investigation accuracy levels considered, the defensive re-
sources saved are significantly greater than those spent on
the initial investigation.
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Figure 3: The defensive resources required by a standard
SSG to achieve the same performance as the independent de-
fense strategy. Different curves correspond to different lev-
els of initial investigation accuracy.

Conclusion

In this paper, we propose a two-stage audit game model
that includes an initial investigation phase. Due to the non-
convex nature of the problem, we consider simpler strate-
gies, called independent defender strategies. Such a strategy
is both computationally efficient and much easier to imple-
ment in reality. We provide an efficient algorithm to find an
optimal independent defender strategy. Through a series of
experiments, we illustrate the impact of the initial investiga-
tion phase. The experiment results show that even with very
limited resources, the investigation phase considerably im-
proves the defender’s utility.
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